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SUMMARY

By exploiting quantum mechanics, quantum computers are able to solve problems—
for example in quantum chemistry—that are far out of reach of classical computers.
Conventional approaches to quantum computers use qubits (quantum bits) that can
either be made out of superconducting circuits (the currently leading approach used
to demonstrate quantum supremacy), store quantum information in the state of single
electrons, or in several other ways. However, all these designs share the same limitation:
noise easily spoils the quantum states and therefore makes quantum error correction
necessary. A fundamentally different approach is to use exotic particles: Majorana bound
states, or simply Majoranas. These particles do not exist in nature but were predicted
to exist in engineered devices. Majorana bound states offer the advantage of being
resilient against small energy fluctuations or noise due to being protected by the system’s
fundamental symmetry.

There is an active search across many groups worldwide trying different pathways
to experimentally create and detect these particles. One promising approach to create
Majoranas relies on a theoretical prediction that a one-dimensional nanowire combining
superconductivity, spin-orbit coupling, a tunable chemical potential, and a magnetic
field should support Majoranas. Whenever the device parameters are in the right regime,
the Majoranas should appear at the edges of the nanowire.

The experimental results diverge from the predictions made by the minimal theo-
retical model due to it missing several physical phenomena. To model the Majorana
nanowires more realistically, we include previously neglected physical effects by consider-
ing the full three-dimensional geometry of the nanowire. These more complex models
exceed the reach of analytical theories and require intensive numerical calculations
instead. To cope with the increasing computational complexity, we develop adaptive
parallel sampling algorithms (discussed in the Ch. 7), which in our research typically
speeds up simulations by at least an order of magnitude. Our approach is illustrated
on the cover of this thesis, which shows the conductance of a Majorana nanowire with
the interesting regions sampled more accurately. The improved models and efficient
sampling, allow us to unveil potential challenges that were not present in the simple
model.

In Ch. 2, we study how the electrons are influenced by the magnetic field while moving
across the nanowire—an effect completely neglected in the minimal model. We observe
that this effect has a stronger impact on the Majoranas than what is included in the
minimal model. Specifically, we observe that the protection of the Majoranas nearly
vanishes when the electron density in the nanowire is high, and find that the magnetic
field has to be precisely aligned with the nanowire to guarantee the presence of Majoranas.

Bringing two Majorana-carrying nanowires in contact and allowing a supercurrent
flow between them is required for making a Majorana qubit. In Ch. 3, we apply our nu-
merical model to analyze experimentally observed behavior of these nanowire junctions.

ix



x SUMMARY

While our results agree with the experimental observations, we observe that the supercur-
rent decreases by an order of magnitude when Majoranas appear. This suppression poses
a new challenge in creating a Majorana qubit.

Our findings may seem like bad news for the creation of Majoranas—unexpected
pitfalls overlooked by the simplified models. The detailed simulations, however, bring
new opportunities as well. Not being constrained to analyzing the devices that are easy to
solve, we are able to design a new zigzag device geometry, that improves the robustness
of Majoranas by an order of magnitude. In Ch. 6, we show that using a zigzag device
geometry (instead of a straight nanowire) eliminates the long electron trajectories that are
responsible for the degradation of the Majorana properties. In addition to the improved
robustness of the Majoranas, this new zigzag geometry is insensitive to the geometric
details and device tuning. This proposal is now the topic of active experimental investiga-
tions by several groups.



SAMENVATTING

Door gebruik te maken van kwantummechanica, kunnen kwantumcomputers problemen
oplossen—bijvoorbeeld in de kwantumchemie—die ver buiten het bereik van klassieke
computers liggen. Conventioneel gebruiken kwantumcomputers qubits (quantumbits)
die ofwel gemaakt kunnen worden van supergeleidende circuits (de momenteel leidende
aanpak en gebruikt om kwantum suprematie aan te tonen), of van enkele elektronen
waarin de kwantuminformatie in hun toestand wordt opgeslagen, of op diverse andere
manieren. Al deze ontwerpen hebben echter dezelfde beperking: ruis kan de kwantum-
toestanden gemakkelijk vernietigen en daardoor is kwantum error correctie noodzakelijk.
Een fundamenteel andere aanpak is het gebruik van exotische deeltjes: gebonden Ma-
joranatoestanden of gewoon Majorana’s. Deze deeltjes bestaan niet in de natuur, maar
het is voorspeld dat ze kunnen bestaan in artificieel gemaakte apparaten. Majorana’s
bieden het voordeel dat ze bestand zijn tegen kleine energiefluctuaties of ruis, omdat ze
beschermd zijn door de fundamentele symmetrie van het systeem.

Wereldwijd wordt er in veel groepen actief gezocht naar verschillende manieren om
deze deeltjes experimenteel te creëren en te detecteren. Een veelbelovende aanpak om
Majorana’s te creëren, is gebaseerd op een theoretische voorspelling dat een eendimen-
sionale nanodraad die supergeleiding, spin-baankoppeling, een regelbare chemische
potentiaal, en een magnetisch veld combineert, Majorana’s zou moeten kunnen bevatten.
Als de parameters in het juiste regime zijn, zouden de Majorana’s aan de uiteinden van de
nanodraad moeten verschijnen.

De experimentele resultaten wijken echter af van de voorspellingen van het mini-
male theoretische model omdat het verschillende fysische verschijnselen mist. Om de
Majorana-nanodraden realistischer te modelleren, nemen we eerder verwaarloosde fysi-
sche effecten mee door de volledige driedimensionale geometrie van de nanodraad te
beschouwen. Deze complexere modellen gaan het bereik van analytische theorieën te
boven en vereisen in plaats daarvan intensieve numerieke berekeningen. Om met de toe-
nemende computationele complexiteit om te gaan, ontwikkelen we adaptieve parallelle
bemonsteringsalgoritmen (besproken in hoofdstuk 7), die in ons onderzoek de simulaties
typisch versnellen met ten minste een orde van grootte. Onze aanpak wordt geïllustreerd
op de cover van dit proefschrift. Dit laat de geleiding door een Majorana-nanodraad zien,
waar de interessante regio’s nauwkeuriger zijn bemonsterd. De verbeterde modellen en
efficiëntere bemonstering, stellen ons in staat om potentiële uitdagingen te onthullen die
niet aanwezig waren in het eenvoudige model.

In hoofdstuk 2 bestuderen we hoe de elektronen beïnvloed worden door het magne-
tisch veld als ze loodrecht op de nanodraad bewegen—een effect dat volledig verwaar-
loosd wordt in het minimale model. We zien dat dit effect een grotere impact heeft op de
Majorana’s dan dat wat er in het minimale model wordt beschouwd. Daarbij zien we dat
de bescherming van de Majorana’s vrijwel verdwijnt als de elektronendichtheid in de na-
nodraad hoog is en ontdekken we dat het magnetisch veld exact uitgelijnd moet worden
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xii SAMENVATTING

met de richting van de nanodraad, om de aanwezigheid van Majorana’s te garanderen.
Het in contact brengen van twee Majorana-bevattende nanodraden en het toestaan

van een superstroom daartussen, is een vereiste voor het maken van een Majorana-qubit.
In hoofdstuk 3 passen we ons numerieke model toe om het experimenteel waargenomen
gedrag van deze nanodraadjuncties te analyseren. Hoewel onze resultaten overeenkomen
met de experimentele waarnemingen, zien we dat de superstroom met een orde van
grootte afneemt wanneer Majorana’s verschijnen. Deze onderdrukking van de super-
stroom vormt een nieuwe uitdaging voor het maken van een Majorana-qubit.

Onze bevindingen lijken misschien slecht nieuws voor de creatie van Majorana’s—
onverwachte valkuilen die niet voortkomen uit vereenvoudigde modellen. De gedetail-
leerde simulaties bieden echter ook nieuwe kansen. Omdat we ons niet beperken tot
het analyseren van de apparaten die gemakkelijk te bestuderen zijn, zijn we in staat om
een nieuwe zigzag-apparaatgeometrie te ontwerpen, die de robuustheid van Majorana’s
met een orde van grootte verbetert. In hoofdstuk 6 laten we zien dat het gebruik van
een zigzag-apparaatgeometrie (in plaats van een rechte nanodraad) de lange elektro-
nenpaden elimineert, die verantwoordelijk zijn voor de verslechtering van de Majorana-
eigenschappen. Naast de verbeterde robuustheid van de Majorana’s, is deze nieuwe
zigzag-geometrie ongevoelig voor de geometrische details en de precieze afstellingen van
het apparaat. Ons voorstel wordt nu actief onderzocht door verschillende experimentele
groepen wereldwijd.



1
INTRODUCTION

1.1. PREFACE
All matter consists of atoms, yet it can appear in various forms and have various properties.
Some familiar examples of these different forms are solids, gases, and liquids; however,
more exotic forms exist, such as superfluids, magnets, plasmas, and Bose-Einstein con-
densates. These different forms of matter are called phases or states of matter. The
various properties of a material depend on its phase (the way atoms structure itself in
that material).

By studying the symmetries of the organization of atoms, we can understand how
many of these different phases arise. Symmetry-breaking theory explains, that if the phase
of a material changes (called a phase transition), such a symmetry changes. For example,
in a liquid, the atoms are randomly distributed. A liquid remains a liquid when moving
the atoms by any arbitrary distance. This property indicates that a liquid has a continuous
translation symmetry. When a phase transition occurs, the liquid turns into a crystal
(e.g. water to ice) and its atoms organize into a lattice. Only when moving the atoms by
an integer number of the lattice constant (the distance between the smallest repeating
pattern), the crystal stays the same. This property indicates that a crystal has a discrete
translation symmetry. The reduction of the liquid’s continuous translation symmetry to
the crystal’s discrete symmetry is an example of symmetry breaking. Another example
is ferromagnets, where above a certain critical temperature Tc the spins of electrons are
pointed in a random direction. This property indicates a continuous rotational symmetry.
However, when T < Tc the spins align, which—like the previous example—reduces the
continuous translation symmetry to a discrete rotational symmetry.

This symmetry-breaking theory was introduced by Lev Landau in 1937 [1]. It was long
believed that it explains all phases in materials and all (continuous) phase transitions.
In 1987, in an attempt to describe high Tc superconductors, the chiral spin state was
introduced [2]. However, it was soon realized that the symmetry breaking description
was not sufficient to explain its phase. A new kind of phase called a “topological phase”
was introduced [3, 4]. It is a zero-temperature phase of matter (i.e. quantum matter)

1
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that is described by a robust ground state degeneracy. This degenerate ground state has
quantized non-Abelian geometric phases; we discuss what this means in Sec. 1.3.

The quantum Hall effect is an example of a state that cannot be described by its
symmetries alone. Instead, it can be characterized by a distinct topology (see Fig. 1.1) [5].
Its signature—shown in Fig. 1.2—is robust and does not depend on the specific geometry
and does not vanish upon smooth changes in the material’s parameters. Its signature
is an exact quantization of the Hall conductance of an integer number of e2/h, where
e is the elementary charge, and h is the Planck constant, both fundamental constants.
Because of its robustness—it is insensitive to specific experimental settings and purity
of the material used—the quantum Hall effect is used to determine the standard for
electrical resistance [6]. The effect appears upon applying a large perpendicular magnetic
field B⊥ to a two-dimensional electron gas at low temperatures. This opens a gap between
the energy bands and localizes the electrons in the bulk. Classically, we can visualize what
happens (see Fig. 1.3), as electrons localizing in small cyclotron orbits; this leaves the
electrons near the edges of the material to bounce along the edges [7]. These states that
propagate along the edges are responsible for the conduction and are called “edge states.”

(a) An unknot. (b) A trefoil knot.

Figure 1.1: Topology in mathematics studies the properties of an object that are preserved under continuous
deformations. For example, because an unknot (a) cannot be continuously transformed into a trefoil knot
(b) without cutting it: they are not topologically equivalent. The object that is studied in condensed matter
physics, is the Hamiltonian. Two Hamiltonians are topologically equivalent whenever an Hamiltonian can be
continuously transformed into another Hamiltonian. Unlike a knot that can be visualized in space, the topology
of the quantum Hall state manifests itself in momentum space. Images adapted from [8, 9].

The field of topology in condensed matter has substantially grown over the past
decades. Recently, in 2016, the Nobel prize was awarded to Thouless, Haldane, and
Kosterlitz for the theoretical findings of topological states. One of these new states are
“topological insulators,” which also exhibit edge or surface states and have similarities to
the quantum Hall effect, but do not require extreme conditions such as the large magnetic
field [7, 10–13]. Here, spin-orbit coupling replaces the effect of the magnetic field (see
Fig. 1.3). This is a coupling between the electron’s momentum and spin, effectively
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Figure 1.2: The integer quantum Hall effect. The Hall conductance GH (reciprocal of the Hall resistance RH ) of a
simulated two-dimensional electron gas as a function of the perpendicular magnetic field B⊥ at 0 K. It displays
a stairlike quantized sequence of Hall conductances equal to ne2/h, where n is an integer characterizing each
plateau.

causing a momentum dependent magnetic field for electrons that move through a crystal
lattice. The spin-orbit coupling effect is discussed in more detail in Sec. 1.4.1. Due to the
absence of a magnetic field (which breaks time-reversal symmetry in the quantum Hall
effect), the edge states always come in counter-propagating pairs, shown in Fig. 1.3.

Besides the exciting new fundamental physical insights into topological materials,
topological states might be used to design novel new quantum devices. One of the most
exciting applications of topological states, is to use them to build a topological quantum
computer by exploiting their non-Abelian properties. It is predicted that a quantum
computer is much faster than a classical computer in performing certain tasks. For
example, the simulation of quantum systems [14] and prime factorization [15]. The
fundamental building block of the quantum computer is the qubit (or quantum bit),
which is the quantum equivalent of the classical transistor. Because these qubits store
quantum information, they are extremely fragile, and even a small interaction with its
environment can destroy its state, which results in computational errors. Physicists
experiment with different approaches to create a qubit; for example, there are proposals
(and some realizations of) qubits based on quantum optics [16], ultracold atoms [17],
spin-based systems [18], and superconducting systems [19]. In general, one of the most
significant problems is to limit and correct the computational errors, and therefore a large
fraction of the research is focussed on error-correction [20]. Here, the advantage of using
topological states becomes apparent because the topological qubit naturally protects its
state against small perturbations in the environment [21].

The zero-energy Majorana bound state (MBS) is the simplest non-Abelian excitation.
The MBS was first proposed to exist as quasiparticle excitations of the ν= 5/2 quantum
Hall effect [22, 23], which requires a high material quality and very low temperatures.
Other early proposals [24–26] rely on rare and exotic p-wave superconductors and are
extremely challenging to realize experimentally. In 2008, Fu and Kane suggested a new ap-
proach to create MBSs by using a hybrid structure of an ordinary s-wave superconductor
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Figure 1.3: Comparison of schematic representations (top) and band structures (bottom) of a normal insulator
(left), quantum Hall effect (middle), and a topological insulator (right). Classically, the electrons in an insulator
(left) are localized around the cores of the ions and therefore cannot flow freely to create a current. From its
band structure (bottom), we observe that at the Fermi level there are no electronic states available that can
contribute to a current through the material. In the quantum Hall regime (middle), the strong perpendicular
magnetic field localizes the electrons in the bulk in cyclotron orbits, while the states at the boundary scatter
along the edges. The localized orbitals open an energy gap in the band structure, with the conducting gapless
edge states remaining due to the unique topologically of the system. The topological insulator (right) is similar
to the quantum Hall state, however, it has two conducting edge channels of opposite spin.

coupled to a topological insulator to create a state that resembles a spinless p-wave super-
conductor [27]. Inspired by this hybrid approach, in 2010, two works [28, 29] suggested
using a simpler one-dimensional nanowire system coupled to a s-wave superconduc-
tor. This simple model combines spin-orbit coupling, superconductivity, electrostatic
tunability, and an applied magnetic field. When tuned into the right parameter regime,
this system hosts MBSs at the edges of the nanowire. Since its introduction, many experi-
ments have detected signatures of MBSs [30–35]; however, none have demonstrated the
presence of MBSs with absolute certainty by showing its non-Abelian statistics. Because
of the simplicity of the model, it can be solved analytically; however, it neglects many
physical phenomena that are crucial for understanding the properties of the MBSs.

In this thesis, we study extensions to this model and go beyond the regime that can be
studied analytically. The next sections introduce superconductivity and the topological
protection of Majoranas (Sec. 1.2), non-Abelian statistics (Sec. 1.3), the minimal hybrid
Majorana model (Sec. 1.4), and finally, a few extensions to this model (Sec. 1.5). At that
point, it should be evident that solving this problem requires numerical methods, which
is the topic of Sec. 1.6.
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1.2. TOPOLOGICAL PROTECTION OF MAJORANAS
To understand the topological protection of Majorana bound states we first discuss su-
perconductivity. This is a set of properties of certain materials that appear when they are
cooled below a characteristic critical temperature Tc. Upon reaching this temperature,
the material goes through a phase transition and it becomes superconducting. The char-
acteristic properties of superconducting materials are their vanishing electrical resistance
and expulsion of magnetic fluxes. While discovered in 1911, a good understanding of
“conventional” superconductivity was only reached more than four decades later through
the phenomenological Ginzburg-Landau theory and the microscopic BCS theory. A lot of
today’s research focuses on exotic superconductors, high Tc superconductors, and hybrid
structures that consist of a superconductor and another material. In this thesis, we study
such hybrid structures.

1.2.1. BCS THEORY AND THE MEAN-FIELD APPROXIMATION

BCS theory describes superconductivity as a microscopic effect. It assumes that two
electrons form a Cooper pair of two electrons, where the electrons effectively attract due
to electron-phonon coupling [36–38]. It postulates that superconductivity is caused by a
condensation of these Cooper pairs at the Fermi energy1 EF into a boson-like state, a Bose
Einstein condensate. The model Hamiltonian in the language of second quantization [39]
is

HBCS =
∑
kσ
εk c†

kσckσ+
∑
kl

Vkl c†
k↑c†

−k↓c−l↓cl↑, (1.1)

where c is the annihilation operator, c† the creation operator, µ the chemical potential, m

the mass, and εk ≡ Ek −µ, where Ek is the kinetic energy (ħ
2k2

2m ). The s-wave symmetry
interaction potential Vkl includes only the Cooper pairs consisting of two electrons
with opposite spin and opposite momentum k: k ↑,−k ↓. Finding the ground state of
many interacting electrons is a major problem not only in condensed matter physics,
but also in quantum chemistry, molecular biology, and many other fields. The BCS
Hamiltonian approximates the Coulomb interaction in momentum space, however, it is
still fundamentally difficult to solve; therefore, we have to make an approximation.

The mean-field approximation is a classic approximation scheme that describes the
behavior of conventional superconductors remarkably well. To use it, we define the
quantity

bk = 〈
ck↑c−k↓

〉
, (1.2)

which in turn we use to define the so-called gap energy

∆k =−∑
k ′′′

Vkk ′′′bk ′′′ . (1.3)

We write the last term in Eq. (1.1) as

c†
k↑c†

−k↓c−l↓cl↑ =
(
c†

k↑c†
−k↓−b†

k +b†
k

)(
c−l↓cl↑−bl +bl

)
, (1.4)

1We assume zero temperature (T = 0), so EF =µ, where µ is the chemical potential.
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and expand the products. We neglect the second-order fluctuation term(
c†

k↑c†
−k↓−b†

k

)(
c−l↓cl↑−bk

)
(1.5)

in Eq. (1.4) and rewrite Eq. (1.1) to

HBCSMF =
∑
k ,σ
εk c†

kσckσ−
∑
k

(
∆k c†

k↑c†
−k↓+∆∗

k c−k↓ck↑−∆k b∗
k

)
, (1.6)

where the last term is a constant that can be neglected. We now introduce Nambu spinors

Ψk =
(

ck↑
c†
−k↓

)
, (1.7)

and write Eq. (1.6) matrix form

HBCSMF =
∑
k
Ψ†

k

(
εk ∆

∆∗
k −εk

)
︸ ︷︷ ︸

HBdG

Ψk . (1.8)

To calculate the energy spectrum, we can diagonalize the Bogoliubov-de Gennes Hamilto-
nian HBdG. Alternatively, we can square HBdG which gives a diagonal matrix

H 2
BdG =

(
ε2

k +|∆|2 0
0 ε2

k +|∆|2
)

, (1.9)

where the eigenvalues are the square root of the eigenvalues of HBdG. This immediately
result in the spectrum

E =±
√
ε2

k +|∆|2. (1.10)

The Bogoliubov-de Gennes Hamiltonian acts on the Nambu spinors [Eq. (1.7)]. These
have annihilation operators of electrons (first half) and creations operators of the same
electrons (second half). To go to a single-particle description (first quantization), we can
view the latter creation operators as annihilation operators of an extra set of holes. In this
way, we essentially double the number of degrees of freedom in the system. Besides the
usual Pauli matrices that act on spin degree of freedom (σi where i ∈ x, y, z,) we introduce
τi to act on the electron-hole degree of freedom. The Hamiltonian becomes a 4×4 matrix2

HBdG = εkτz ⊗σ0 +∆τx ⊗σ0 =


εk 0 ∆ 0
0 εk 0 ∆

∆ 0 −εk 0
0 ∆ 0 −εk

 , (1.11)

which acts on the wavefunction

Ψ= (
ψe↑,ψe↓,ψh↓,−ψh↑

)T , (1.12)

where ψe, ψh are the electron and hole components of the wave function, and ψ↑, ψ↓
are the spin-up and spin-down states. Due to the holes being related to the electrons,
the Hamiltonian HBdG has a particle-hole symmetry. A symmetry, or combination of
symmetries, determines a material’s specific topology. Symmetry and the topology that
results from it, is the topic of the next section.

2Here ⊗ denotes the Kronecker product and we usually omit σ0 and τ0.
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1.2.2. TOPOLOGY AND SYMMETRY

Symmetry plays a fundamental part in physics. In condensed matter systems, only three
discrete symmetries are important: time-reversal symmetry T , particle-hole symmetry
P , and chiral symmetry C . Wigner’s theorem states that a symmetry must either be
a unitary or an anti-unitary operator [40]. Both T and P have anti-unitary operators
and may square either to +1 or −1 depending on the specifics of the system. Chiral
symmetries have a unitary operator and always square to +1. The combination of these
three symmetries form ten symmetry classes [41]. Each class is characterized by the
absence or presence of these symmetries, and together with the dimensionality of a
system determines the specific topological invariant it has. Topology studies whether
objects can be continuously transformed into each other. The object that is studied in
condensed matter physics is the Hamiltonian of a system. If two Hamiltonians can be
continuously transformed3 into each other without changing the topological invariant,
the systems are “topologically equivalent.” How a topological invariant changes, varies
for the different symmetry classes.

We ended Sec. 1.2.1 by noting that HBdG [Eq. (1.11)] has a particle-hole symmetry
which is of the form P = −iσyτyK , where K is the complex conjugation operator.
This Hamiltonian acts on a two-component (neglecting spin) wave function ψBdG =(
ψe,ψh

)T . The symmetry of this Hamiltonian is most obvious in its dispersion relation,

where each eigenstate ψE = (
ψe,0,ψh,0

)T has a particle-hole symmetric partner at ψ−E =
P

(
ψe,0,ψh,0

)T =
(
−ψ∗

h,0,ψ∗
e,0

)T
. In constructing HBdG, we artificially doubled the degrees

of freedom by considering electrons and holes separately. Therefore, the creation operator
c† of the quasiparticle in the ψE state is equal to the annihilation operator c of the
quasiparticle in the ψ−E state. From this, it is clear that ψE and ψ−E correspond to the
same quasiparticle. In a one or higher dimensional system, the operator P will not only
send E →−E but will also send the momentum k →−k as

P †H (k)P =−H∗ (−k) . (1.13)

At zero energy, something curious happens: here we have a state ψ0 that upon ap-
plying P is transforms into itself Pψ0 =ψ0. This state has a creation operator γ† that
is identical to the annihilation operator γ of itself, so γ† = γ. We call this property the
Majorana condition. If we use the Majorana condition in the fermionic commutation
relation

γ†γ+γγ† = 1, (1.14)

we get γ†γ = 1/2 and see that the Majorana state is always half occupied. Removing a
Majorana from zero energy is, therefore, only possible if it is paired with another Majorana
to form a fermionic mode. Later, in Sec. 1.3 we make use of this property and show how
these Majoranas exhibit non-Abelian statistics. Subsequently, in Sec. 1.4, we show that it
is possible to create Majoranas at two opposite edges of a nanowire where they do not
couple and are pinned to E = 0; this provides the so-called topological protection. Here,
the fermionic mode (which is occupied or unoccupied,) is the quantity that is protected.

3An example of a continuous transformation from H1 to H2: H =αH1 + (1−α)H2 where α= 0 → 1.
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The symmetry class of the one-dimensional system we study in this thesis has a
particle-hole symmetry P , and therefore belongs to class D. This class has a Z2 topolog-
ical invariant Q that is the sign of the Pfaffian of the Hamiltonian: Q = sgnPf(H). This
invariant can only assume two values (+1 or −1) and indicates the presence or absence
of Majoranas. 4 This topological invariant is only defined for a system with an energy
gap, which means the Hamiltonian of the system has no eigenvalues in a finite interval
around zero energy, as in Eq. 1.11. If we can continuously transform a Hamiltonian H1

into another Hamiltonian H2 without ever closing the energy gap, we say H1 and H2 are
topologically equivalent, and thus have the same topological invariant.

1.3. NON-ABELIAN STATISTICS AND BRAIDING
For many researchers, the ultimate motivation to study Majoranas is because of their
fascinating property: non-Abelian quantum statistics. Quantum statistic studies what
happens to wavefunctions describing identical particles when their positions are ex-
changed in space. In introductory quantum mechanics courses, we learn that particles
are divided into two classes according to quantum statistics: bosons which stay the same
under the exchange and fermions for which the wavefunction changes sign. However,
Majorana bound states do not belong to either of these classes. Instead, they are non-
Abelian anyons. The operation of exchanging two Majoranas (called braiding) can send
the system into a different state with the same particle configuration. Explaining how to
experimentally perform a braiding operation is beyond the scope of this thesis; therefore,
we will focus on the mathematical operations that describe such a braiding process.

In one dimension, exchanging two Majoranas is ill-defined because it is impossible
to swap them without colliding and consequently annihilating them. It is possible to
construct a network of nanowires to form T-junctions (see Fig. 1.4), which allows to
exchange the positions of Majoranas. Here, one can temporarily move a Majorana to the
unoccupied wire section and perform the exchange without the Majoranas ever becoming
too close to each other. The only thing distinguishing the Majoranas is their position.
That means that after exchanging two Majoranas in space, the system looks identical to
the way it looked before the exchange. We now assume the energy spectrum is gapped
for |E | <∆with the Majorana ground state at E = 0. If this ground state contains several
Majoranas, all at zero energy, they form a “ground state manifold.”

From now on, we only consider the states corresponding to the Majoranas and neglect
the states that live in the bulk (E ≥∆). As mentioned in Sec.1.2.2, a Majorana only has
half a degree of freedom, and thus, they can only be assigned quantum states in pairs.
In Fig. 1.4 we see six Majoranas (3 pairs), but for generality lets consider N pairs. By
pairing two Majoranas (two times half a degree of freedom), we form fermionic modes
that give two possible degenerate quantum states, either unoccupied |0〉 or occupied |1〉.
By pairing up neighboring Majoranas γ2n−1 and γ2n , we get a creation operator that is
its own complex conjugate c†

n = 1
2 (γ2n−1 + iγ2n), where c is a fermionic creation operator.

Each pair gives two possible quantum states, so N pairs will have 2N possible states. We
can represent every state with a ket

|s1, s2, . . . , sN 〉 , (1.15)

4The Pfaffian for an anti-symmetric matrix is related to the determinant as Pf(A)2 = det(A).
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γ1 γ2 γ3 γ4 γ5 γ6

Figure 1.4: Majorana T-junction. The circles represent the Majoranas γ1...γ6. This network of nanowires allows
for the exchange of two Majoranas without having them collide. This is possible by temporarily bringing a
Majorana to one of the vertical wires and then swapping the position of the other Majorana.

where sn is either unoccupied 0 or occupied 1. These states form a complete basis of the
Hilbert space.

We define the fermion parity operator

Pn ≡ 1−2c†
ncn = iγ2n−1γ2n , (1.16)

that acts on the states and where we recognize the c†
ncn term as the number operator. All

basis states in the Hilbert space of the Majoranas are eigenstates of Pn . For example, we
have

P1 |0, . . .〉 = (1−2c†
1c1) |0, . . .〉 =+|0, . . .〉 , (1.17a)

P1 |1, . . .〉 = (1−2c†
1c1) |1, . . .〉 =−|1, . . .〉 . (1.17b)

Another important property of Majoranas is that a pair of Majorana operators all anti-
commute with each other. So

(γ1γ2)(γ3γ4) = (γ3γ4)(γ1γ2), (1.18)

however, if the pairs share a Majorana, they do not commute anymore, like

(γ1γ2)(γ2γ3) =−(γ2γ3)(γ1γ2). (1.19)

Section 1.2 introduced the Hamiltonian Eq. (1.11), which does not conserve particle
number; however, it conserves the parity. To calculate the total parity we multiply all
parity operators

Ptot = P1 ·P2 · . . . ·PN = i Nγ1γ2 . . .γ2N , (1.20)

where Ptot has eigenvalues ±1. Because the parity is Hermitian, it’s observable and
equivalently, can be measured experimentally.

We can now start to think about what happens when we exchange two Majoranas [42].
Our ground state manifold |Ψ〉 never leaves the ground state if we perform the exchange
slowly enough. The exchange of two Majoranas γn and γm changes the ground state
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|Ψ〉→U |Ψ〉 where U is a unitary operator. The exact form of U can be derived without a
direct calculation. We do this by assuming that U only depends on the Majoranas involved
in the exchange ( γn and γm) and by using that the slow exchange does not change the
parity of the system because the system stays gapped at all times. Since the parity is
conserved, we know that U commutes with the total fermion parity [U ,Ptot] = 0, and that
U can only depend on the product iγnγm . This product is Hermitian, so we can create a
unitary operator by taking the exponential of i times this Hermitian operator as

U ≡ exp(βγnγm) = cos(β)+γnγm sin(β), (1.21)

whereβ is a real coefficient. In the last equality we used (γnγm)2 = γnγmγnγm =−γnγmγm︸ ︷︷ ︸
=1

γn =

−1 in the Taylor expansion. We now move to the Heisenberg picture where we look at the
evolution of the Majorana operators in time

γn →UγnU † = (
cosβ+γnγm sinβ

)
γn

(
cosβ+γ†

mγ
†
n sinβ

)
, (1.22a)

= γn cos2β+
(
γnγ

†
mγ

†
n +γnγmγn

)
sinβcosβ+γnγmγnγ

†
mγ

†
n sin2β, (1.22b)

= γn cos2β−γ†
n sin2β−2γm sinβcosβ, (1.22c)

= γn cos2β−γm sin2β. (1.22d)

In a similar way, we get

γm →UγmU † = γm cos2β+γn sin2β. (1.23)

After the exchange happened we know that γm → γn and γn → γm , which means that
β=±π/4. The two opposite signs distinguish the clockwise and the counterclockwise
exchange of the Majoranas. We now found an operator that exchanges two Majoranas

U = exp
(
±π

4
γnγm

)
= 1p

2

(
1±γnγm

)
. (1.24)

As an example, we consider just four Majoranas γ1, γ2, γ3, and γ4 and exchange their
positions. The four basis states in the ground state manifold are

|00〉 , |01〉 , |10〉 , |11〉 , (1.25)

where the first number is the occupation number of the fermionic mode c†
1 = 1

2 (γ1 + iγ2)

and the second number the occupation number of c†
2 = 1

2 (γ3 + iγ4). For instance, if we
start from the state |00〉 and we exchange γ2 and γ3 by applying U23 = 1p

2

(
1±γ2γ3

)
, we

obtain
|00〉→U23 |00〉 = 1p

2
(|00〉+ i |11〉) . (1.26)
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Figure 1.5: Band structures of Hamiltonians with chemical potential µ=−0.3 and superconducting gap ∆= 0
(left); µ= 0.3 and ∆= 0 (middle); and µ= 0.3 and ∆= 0.1 (right).

Here we see a superposition of states, which is not like bosons or fermions, where the
exchange only changes the sign. Because of this property, Majoranas are non-Abelian
anyons. As noted before, exchanging two non-Abelian anyons is called braiding. Using
these braiding operations, it is possible to create a qubit that can perform a certain
set (but not all) of rotations on the single-qubit Bloch sphere. This means that some
of the qubit operations are topologically protected. This reduces the amount of error-
correction needed in comparison with a non-topological qubit, and in turn, means that
fewer physical qubits are required.

1.4. MAJORANAS IN A MINIMAL HYBRID NANOWIRE
The combined effect of superconductivity, spin-orbit coupling, and a Zeeman field can
lead to the appearance of Majoranas near the edges of the wire [28, 29]. To understand how
this happens, we study the effects of the various terms in the Hamiltonian. As discussed
in Sec. 1.2.2, the appearance of Majoranas is a topological effect and is accompanied by
the change of the topological invariant Q of symmetry class D. This invariant can only
assume Q =+1 (no Majoranas) and Q =−1 (Majoranas present) and changes when the
band gap closes and reopens.

1.4.1. THE HAMILTONIAN: TERM BY TERM
The complete model Hamiltonian is rather complicated; therefore, we start with a one-
dimensional single band Hamiltonian and study its band structure while adding the terms
needed to make a topological band structure and “engineer” our way towards Majoranas.
The Hamiltonian in its simplest form is quadratic in momentum and has an offset in
chemical potential µ

H =
(

p2

2m
−µ

)
τz , (1.27)

where τz is a Pauli matrix that acts on the electron-hole substructure. The band structure
for this Hamiltonian with µ=−0.3 is shown in Fig. 1.5 (left). We assume that this band
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Figure 1.6: Band structures of Eq. (1.29) for different values of magnetic field and ∆= 0.1, µ= 0.3.

structure is topologically trivial and has Q =+1. Because this Hamiltonian acts trivially in
spin-space, the bands in Fig. 1.5 (left) are doubly degenerate. Finally, the electrons are at
positive energy E and the holes on −E .

Next, we raise µ, which shifts the bands [see Fig. 1.5 (middle)]. In Sec. 1.2.2, we
explained that the topological invariant is only defined for a system with an energy gap.
This band structure has no band gap, and therefore cannot be topological. Further, in
Sec. 1.2 we observed that a BdG Hamiltonian has a gapped spectrum [Eq. (1.10)], so we
add ∆τx , which results in

HBdG =
(

p2

2m
−µ

)
τz +∆τx , (1.28)

and opens a gap because τx mixes the electron and holes [see Fig. 1.5 (right)].
We are left with a gapped spectrum; however, we closed the band gap twice because

of the doubly degenerate spin bands both crossing zero energy simultaneously. The spin
degeneracy (called a Kramers degeneracy5) is a result of a time-reversal symmetry and
needs to be broken to create isolated Majoranas. To couple to spin we introduce the
Zeeman field EZσx = 1

2 gµBBσx in the Hamiltonian

HBdG =
(

p2

2m
−µ

)
τz +∆τx + 1

2
gµBBσx , (1.29)

where g is the Landé factor, µB the Bohr magneton, and B magnetic field along x, parallel
to the wire direction. In Fig. 1.6 we plot the effect of a magnetic field on the band structure
and observe that a magnetic field breaks the Kramers degeneracy. The bands moving
towards each other have opposite spin (orthogonal states), and as we see in Fig. 1.6
(middle and left), these spins do not couple. The problem is that Zeeman conserves
spin in x-direction, and therefore spin is still a good quantum number. We know that
Majoranas must be spinless because they are their own complex conjugate.

5A Kramers degeneracy would result in two Majoranas per edge (just a fermion).
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Figure 1.7: Band structures of Eq. (1.30) for different values of spin-orbit coupling α and B = 0, ∆= 0.1, µ= 0.3.
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Figure 1.8: Band structures of Eq. (1.30) for different values of spin-orbit coupling α and B = 0.3, ∆= 0.1, µ= 0.3.

The solution to this last problem is spin-orbit coupling, which in its simplest form is
Rashba: HRashba =−αpxσyτz . The Hamiltonian is now complete and equals

HBdG =
(

p2

2m
−µ

)
τz +∆τx + 1

2
gµBBσx −αpxσyτz . (1.30)

Spin-orbit by itself—even though it couples spin—is insufficient to break the Kramers
degeneracy. In Fig. 1.7, we see that raising αmoves the different spin bands away in either
+k or −k direction. However, a degeneracy remains at k = 0, revealing why a magnetic
field is needed. Including a magnetic field opens the gap at k = 0 (see Fig. 1.8) making the
system topologically nontrivial. If the system is of a finite length, it will host Majoranas
on its edges at E = 0.
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Figure 1.9: Probability density and band structure of a 1D system. The probability density of the lowest energy
wavefunction (Majorana wavefunction) of a 0.3µm long nanowire (left) and a topological band structure (right)
with the same parameter values, but for an infinite system. The Majorana length ξ—the decay length of the
wavefunction—in the left plot is ξM = 43.4nm.

1.4.2. WAVEFUNCTION

We now have all the terms in the Hamiltonian to create a topological band structure, which
we calculate for an infinite system (i.e., system with a translational symmetry). To observe
Majoranas, we need to diagonalize the Hamiltonian of a finite system with the same
parameters that resulted in the topological band structure and plot the wavefunction with
the lowest energy: the Majorana wavefunction. In Fig. 1.9 (left), we plot the probability
density of the Majorana wavefunction and observe that it is indeed localized near edges
of the nanowire. This wavefunction decays exponentially from both sides with a decay
length ξM.

1.4.3. PHASE DIAGRAM

The Hamiltonian [Eq. (1.30)] contains a few fundamental constants and constants that
are material dependent; however, the chemical potential µ and magnetic field B can be
adjusted in an experiment. A good question is, for which values of B and µ the system is
topological. Due to its compactness, this model can be solved analytically, and it predicts
that Majorana bound states appear when E 2

Z >µ2+∆2, when the Zeeman energy becomes
larger than the harmonic mean of the superconducting gap and the chemical potential.
In Fig. 1.10 we plot a phase diagram, which indicates for which value of

(
B , µ

)
the system

is topological. In the next section, we will extend this model to three dimensions and
study how it modifies the phase diagram.

1.5. MAJORANAS IN A MORE REALISTIC 3D HYBRID NANOWIRE
The simple one-dimensional model we introduced in the previous section is useful be-
cause it can be solved analytically and therefore, it gives us many insights. However,
because of its simplicity, it also ignores multiple relevant physical effects. For example, the
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Figure 1.10: A phase diagram of a one-dimensional Majorana nanowire device as a function of magnetic field B
and chemical potential µ. The color indicates whether the system is in the topological or trivial phase. This
system becomes topological whenever E2

Z >µ2 +∆2.

model assumes a one-dimensional nanowire even though we live in a three-dimensional
world, and so does the nanowire device when an experimentalist creates it. Besides the
additional orbitals that are present in a three-dimensional system, the magnetic flux pen-
etrating the nanowire cross-section modifies the Hamiltonian and changes the complex
phases of the moving quasiparticles. Further, the simple model assumes a tunable but
constant chemical potential µ inside the nanowire. In an experiment, the nanowire is
close to a metal gate at a certain voltage; its electric field changes the potential inside
the nanowire non-homogeneously. In addition to these theoretical considerations, the
experimental measurement results do not correspond to the predictions that the simple
model makes. For example, for measuring the conductance from a nanowire hosting Ma-
joranas to a normal lead, the model predicts a quantized conductance of 2e2/h at a bias
voltage of VB = 0, the so-called zero-bias peak. Nearly all experiments that measure this
fail to reproduce this zero-bias peak where the conductance is quantized. Another effect
that is not captured by the simple model is the superconducting density of states (DOS),
which in theory predicts a vanishing DOS inside the gap (|E | <∆) but in the experiment
a non-zero DOS persists, this phenomenon is also called “soft gap.” Because of these
limitations, we will improve the simple model by adding relevant physical effects.

1.5.1. MULTIPLE BANDS
In 3D, the model Hamiltonian [Eq. (1.30)] is modified to

HBdG =
(

p2

2m
−µ

)
τz +∆τx + 1

2
gµBBσx +α

(
pyσx −pxσy

)
τz , (1.31)

such that it includes the transverse part of the Rashba spin-orbit. The two additional
dimensions result in more orbitals and equivalently more bands; therefore, the condition
E 2

Z >µ2 +∆2 for a topological nanowire is no longer valid. Because there are more bands,
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Figure 1.11: Topological phase diagram (a) of a 3D system where the dot indicate the parameter values of B , µ
at which the surrounding band structures (b-d) are plotted. The color in the phase diagram (a) shows the size
of the topological gap Egap ≡ mink E(k) and the dashed lines are the topological phase boundaries. The band
structure (b) is trivial but near a phase transition, (c) is at the phase transition, and (d) is inside of the topological
regime.

multiple Majoranas can be created on both edges of the nanowire as µ increases. However,
these additional Majoranas are not topologically protected (without an additional sym-
metry), and a small perturbation can pair-wise annihilate all but N mod 2 of them. The
position of the phase boundaries now also depends on the cross-section’s geometry. For
example, Fig. 1.11 shows a phase diagram (and band structures at different combinations
of B and µ) of a nanowire with a cylindrical cross-section.

1.5.2. THE ORBITAL EFFECT OF THE MAGNETIC FIELD
Whenever a magnetic flux can penetrate a surface of the nanowire, the canonical momen-
tum operator in Eq. (1.31) is modified to include the vector potential

p →−iħ∇−q Aτz , (1.32)

where q is the elementary charge, which is different for electrons and holes. In the weak
coupling regime—with a non transparent semiconductor/superconductor interface—
and a wire that is symmetric with respect to the wire axis, the vector potential is A =[
By (z − z0)−Bz (y − y0),0,Bx (y − y0)

]T , which is chosen such that it does not depend on
x. Here, we set the offsets y0 and z0 such that the average vector potential vanishes in the
superconductor. Physically, this choice corresponds to a limit where the total supercurrent
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Js is zero, appropriate for existing devices that use NbTiN as a superconducting shell. In
this case, the superconductor can be considered as a perturbation that only provides the
electron-hole coupling in the normal regime. However, devices that have a thin Al shell
are in the strong coupling regime. Because of the high density inside the superconductor
(compared to the semiconductor), the wire can no longer be considered as symmetric
with respect to the wire axis. To get correct physical observables from both the vector
potential and the superconducting phase difference Φ [43], we have to ensure that the
total supercurrent cancels out,

Js = 2ens

m
(2e A −ħ∇Φ) = 0, (1.33)

where ns is the density in the superconductor. At zero temperature, this can be archived
by minimizing the kinetic energy, which is proportional to Es ∝

∫
d x J 2

s (x) [44]. This
minimization results in the correct vector potential and the superconducting phase. The
inclusion of the orbital effect modifies the phase diagram, which is discussed in Ch. 2
in the weakly coupled superconductor limit, while Ch. 5 discusses the strongly coupled
superconductor limit.

1.5.3. DISORDER
Perfectly ordered crystalline solids are characterized by a faultlessly regular arrangement
of their atoms in a crystal lattice, yet, these do not occur in nature [45]. Real solid-state
systems are not perfectly smooth and have impurities: they are disordered. Disorder
is always present and it has a strong impact on the physical properties of proximitized
nanowires. Research has shown that both disorder in the semiconductor and at the
semiconductor-superconductor interface is detrimental to the creation of Majoranas
in proximitized nanowires [46–52]. However, semiconductor nanowire with epitaxially
grown aluminum [53, 54] minimize the disorder effects and have high-quality semicon-
ductors and semiconductor-superconductor interfaces; however, its outer surface is
oxidized and therefore strongly disordered. Scattering of the disordered superconducting
boundary randomizes the quasiparticle’s motion inside the superconductor. Fortunately,
because of the large difference in the effective masses and Fermi energies between the
semiconductor and the superconductor, as argued by the authors of [47, 52, 55], disor-
der in the superconductor is not detrimental to the manipulation and observation of
Majoranas, however, a more systematic numerical study is required. This problem is
complex to study numerically because of the aforementioned high density differences,
which means that the discretization in the superconductor has to be smaller than the
Fermi wavelength of Al, ≈ 0.1Å. A full-scale three-dimensional simulation is therefore
beyond what is currently feasible. Nevertheless, [56] simulates a slice of the proximi-
tized nanowire, and finds that disorder strongly affects important quantities such as the
induced gap ∆ind, the critical field Bc, and their dependence on the external gate voltage.

1.5.4. ELECTROSTATICS
The model Hamiltonian Eq. (1.31) has a constant chemical potential µ in the nanowire.
Experimentally, µ is set by the external metal gates that, when applying a voltage, will
change the electrostatic environment inside the device. Therefore, we replace the static
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chemical potential by a spatially dependent electrostatic potential µ→−V (x, y, z) in the
Hamiltonian. Recent proposals of scalable designs for topological quantum computing
with Majoranas rely on a precise electrostatic control. A good understanding of how
the metal gates influence the electrostatic potential is therefore required to interpret
both existing Majorana experiments and future improved Majorana devices. One of the
challenges is that the metal gates have band offsets in the 1-eV range, while a typical
semiconductor’s Fermi energy lies in the 1-meV range, three orders of magnitude dif-
ference [57]. Additionally, as mentioned in Sec. 1.3, the BCS mean-field approximation
breaks charge conservation. We can formulate the quantum-electrostatic problem as a
solution of three equations solved self-consistently. We have the Schrödinger equation

HBdGψ= Eψ, (1.34)

the Poisson equation

∇2ϕ=−ρ
ε

, (1.35)

where ε is the permittivity, and the density of states is

ρ = e
∫

dEρi (E) f (E), (1.36)

where f (E ) is the Fermi distribution and ρi (E ) ≡ 1
2π

∑
α

∣∣ψαE (i )
∣∣2 the local density of states.

Using these equations, one can iterate the following steps until convergence has been
reached:

1. given the electronic density, solving the Poisson equation [Eq. (1.35)] results in the
electrostatic potential,

2. given the electrostatic potential V (x, y, z), solving the Schrödinger equation [Eq. (1.34)]
results in the energy spectrum E and wave functions ψ,

3. finally, using that the bands fill according to the Fermi distribution f (E ), we get the
electronic density [Eq. (1.36)].

Several works have solved this problem, however, always using certain approximations.
For example, [58] does this in the long junction or weakly coupled regime for a trans-
lationally invariant slice of the system. Other works try to solve this problem for the
short junction or strongly coupled regime, also only simulating the cross-section of the
nanowire [56], and/or by employing the Thomas-Fermi approximation [44, 59] (with
which one can replace step 2. and 3. by using a scalar equation that returns the density
ρ,) or by using other approximations [60–62]. These works find that applying a voltage
on external metal gates renormalizes several important physical parameters, such as the
induced superconducting gap ∆ind and the critical magnetic field Bc, and in turn, this
means that the phase diagram changes. Due to the extreme computational complexity, no
one has solved the full three-dimensional Schrödinger-Poisson problem, while treating
the superconductor and semiconductor on equal footing.
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1.5.5. SUPERCONDUCTING ORDER PARAMETER

In most studies [44, 56, 58, 63, 64], the superconducting order parameter ∆ is assumed
to be constant inside the superconductor, even though an applied magnetic field might
cause a spatial variation in both∆’s phaseφ and amplitude. One possible reason for this is
the Meissner effect, where the superconductor (below its critical temperature Tc) develops
a supercurrent and expels the magnetic field. When the applied magnetic field B is large,
vortices appear, which in the center have ∆= 0 and allow magnetic flux to penetrate the
superconductor. In turn, this suppresses the induced superconducting gap ∆ind locally
and creates unwanted subgap states in the superconductor. Ginzburg-Landau theory
captures vortex formation. Section 4.7.2 investigates this for a NbTiN superconductor
where the superconducting penetration depth λ is approximately three times smaller
than the thickness of the superconductor and find that the vortices that appear do not
have a substantial effect on the size of the induced gap. However, the epitaxially grown
aluminum is much thinner (typically ≈ 10nm). In this case, λ is much larger, resulting in a
uniform magnetic field inside the superconductor. Here, the orbital effect of the magnetic
field needs to be adequately treated, which is done by the authors of [43, 44], as discussed
earlier. In principle, the amplitude |∆| is also spatially dependent, and can be solved
self-consistently as it often done in ferromagnetic chains on superconductors [65, 66].
However, in the case of hybrid semiconductor-superconductor systems, it is shown that
this effect is less significant [67].

1.5.6. SPIN-ORBIT COUPLING

Finally, the presence of strong spin-orbit coupling is crucial to create Majoranas. The
Rashba spin-orbit term α

(
pyσx −pxσy

)
in Eq. (1.31) can be derived in the framework of

the k·p perturbation theory. Intuitively, it can be understood as an effective magnetic
field that is the result of an inversion symmetry breaking electric field along the z axis
HE =−E0z. An electron that moves through this electric field with velocity v , experiences
an effective magnetic field B =−(v ×E )/c2 due to relativistic corrections. This effective
magnetic field couples to the spin as HSO = 1

2 gµBB ·σ=− gµB

2c2 (v ×E ) ·σ. Combining the

constants into α = gµBE0ħ/2mc2 results in HSO that appears in Eq. (1.31). Therefore,
this term assumes a homogeneous electric field, which is the case for a wire with a
constant chemical potential µ. However, as discussed earlier, this is not the case. The k·p
perturbation theory that includes multiple conduction and valance bands models the
spin-orbit coupling more accurately. Here, the spin-orbit strength depends on the electric
field resulting from the voltage that is applied to the external metal gates. In addition, k·p
theory also provides a better model for the effective mass in a semiconductor. However,
describing k·p theory is beyond the scope of this thesis. Finally, as Majorana device
simulations become capable of correctly including the spatially varying electric field into
their models (as discussed earlier), it enables researchers to understand how this affects
the spin-orbit coupling by using the k·p theory.

1.6. NUMERICAL METHODS

Section 1.5 shows that realistically modeling Majorana devices is complex and that it is
impossible to solve these problems analytically without making simplifications that still
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capture all of the relevant physics. Therefore, to study Majorana devices, we must use
numerical methods. Using the finite difference approximation, we can convert the linear
ordinary differential equation, the continuous BdG Hamiltonian Eq. (1.31), into a system
of equations described by a (potentially very large) sparse matrix. With readily avail-
able standard sparse linear algebra techniques, such as the shift-invert diagonalization
method, we can efficiently find low energy wavefunctions of our system.

1.6.1. BAND STRUCTURE
In principle, to correctly predict device properties, one needs to simulate a large nanowire
that includes the edges of the wire. However, because topology is robust and insensitive
to details, we can simulate just the band structure in the bulk of the wire. From this, we
understand whether the system is topological or topologically trivial. To calculate a band
structure E(k), we use Bloch’s theorem, which states that the wave function in a crystal
changes under translation only by a phase factor

ψ(r +a) = e i akψ(r ), (1.37)

where k is the wave vector of the wave function and a the size of the unit-cell. This
implies that we only need to simulate a translationally invariant unit-cell to get E (k). The
Hamiltonian equals

H (k) = h + t exp(i k)+ t † exp(−i k), (1.38)

where h is the Hamiltonian of the cross section of the tight-binding system and t is the
hopping matrix between the neighboring cross sections. Next section explains how to get
the tight-binding model. Diagonalizing this Hamiltonian at k results in the spectrum E (k).
Finally, due to the discretization, the Brillouin zone is periodic. However, one should be
careful to not simulate effects from its corners because the band structure only correctly
represents the continuum model near the band bottom.

1.6.2. DISCRETIZATION OF THE HAMILTONIAN
To turn Eq. (1.31) into a discretized tight-binding model, we replace p →−iħ∇, where

∇≡
(
∂
∂x

, ∂
∂y

, ∂
∂z

)
≡ (

∂x ,∂y ,∂z
)
, to get

HBdG =
(−ħ2∇2

2m
−µ

)
τz +∆τx + 1

2
gµBBσx + iħα(

∂xσy −∂yσx
)
τz . (1.39)

We discretize the differential operators in HBdG on sites of a square lattice with lattice
constant a. Every site is indexed by integer lattice coordinates (i , j ,k), which have real-
space coordinates (x, y, z) = (ai , a j , ak) = r . It is convenient to introduce creation c†

r and
annihilation cr operators that act on the sites, where

cr ≡ cai ,a j ,ak = cx,y,z . (1.40)

Using these, and assuming that a is sufficiently small, we express the first order differential
operator as

∂x = 1

a

∑
i , j ,k

(
c†

r cr−ax̂ − c†
r cr

)
, (1.41)
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and the second order differential operator as

∂2
x = 1

a2

∑
i , j ,k

(
c†

r cr+ax̂ + c†
r+ax̂ cr −2c†

r cr

)
, (1.42)

and similar expressions for ∂y , ∂z , ∂2
y , and ∂2

z . Substituting all of these into the Hamiltonian

and using t = ħ2

2ma2 gives

HBdG = ∑
i , j ,k

c †
r Honsitecr

+ ∑
i , j ,k

(
c †

r Hhop,x cr+ax̂ +c †
r Hhop,y cr+aŷ +c †

r Hhop,z cr+aẑ +H .c.
)

,
(1.43)

where c is a vector of creation and annihilation operators that acts on the BdG degrees of
freedom on the same site, and

Honsite = Bx gµBσx

2
+∆τx −µτz +6tτz , (1.44)

Hhop,x =−tτz +
iασyτz

2a
, (1.45)

Hhop,y =−tτz − iασxτz

2a
, (1.46)

Hhop,z =−tτz . (1.47)

These matrices can easily be implemented in a numerical model, for example, using
the Kwant package [68].

1.6.3. PEIERLS SUBSTITUTION
In Sec. 1.5.2, we discussed the orbital effect of the magnetic field and included the vector
potential as in Eq. (1.32). To include this into a discretized Hamiltonian, we use the Peierls
substitution, which is the lattice version of the vector potential [69]. In the presence of an
external magnetic vector potential A (using the second quantization notation introduced
in the previous subsection), we redefine translation operators c †

r Hhopcr+ax̂ appearing in
the kinetic and spin-orbit part of the Hamiltonian in the tight-binding model, as

Tx = c †
r+ax̂ Hhopcr e iθx

r , (1.48a)

Ty = c †
r+aŷ Hhopcr e iθ

y
r , (1.48b)

Tz = c †
r+aẑ Hhopcr e iθz

r , (1.48c)

where the phases are defined as

θx
r = q

ħ
∫ i+1

i
Ax (x, j ,k)dx, (1.49a)

θ
y
r = q

ħ
∫ j+1

j
Ay (i , y,k)dy, (1.49b)
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θz
r = q

ħ
∫ k+1

k
Az (i , j , z)dz. (1.49c)

Here, the elementary charge q , is opposite for the electrons and the holes. Thus, adding
a magnetic field B =∇× A—including a choice for the vector potential A—to the tight-
binding model, thus amounts to adding the above phase terms to the hopping terms of
the Hamiltonian.

1.6.4. TOPOLOGICAL PHASE BOUNDARIES
There are many problem specific methods, for example, calculating the topological energy
gap Egap ≡ mink E(k) from the band structure, calculating the topological invariant Z2,
or determining the position of the phase boundaries in parameter space. This section,
explains the latter for a nanowire that has a constant chemical potential µ. As discussed in
Sec. 1.2.2, whenever the topological energy gap Egap closes, the Z2 topological invariant
Q changes. Section 1.4.3 showed a phase diagram of a one-dimensional nanowire as a
function of Bx andµ, where the position of the topological phase boundaries are expressed
through a simple analytical expression. In a three-dimensional nanowire this expression is
no longer valid. Instead, we have to numerically find where the gap closes: we need to find
when Egap(Bx ,µ) = 0. This is computationally expensive because for each value of (Bx ,µ),
we have to solve a minimization problem. We can also use the property that the gap
always closes at either k = 0 (or k =π)6, however, we would still need to do many iterative
solves of the eigenvalue problems to find where E(k = 0,Bx ,µ) = 0. Alternatively, we can
use this property to define an optimized algorithm to simultaneously find all the values of
µ that correspond to the topological phase transition. We can reformulate the problem
as an eigenvalue problem, and solve for the values of µ and ψ in HBdG(µ,k = 0)ψ= 0. We
rewrite this equation as a generalized eigenvalue problem by using that µ enters HBdG

only as a prefactor of a linear operator. This results in

HBdG(µ= 0,k = 0)ψ=µτzψ. (1.50)

Using standard generalized eigensolvers, we easily find its eigenvalues. The real eigen-
values are the values of µ where the gap closes at k = 0. The difference between solving
Eq. (1.50) and finding E(k = 0) is visualized in Fig. 1.12.

1.6.5. LIMITS AND COMPLEXITY
Section 1.5 discussed many potential improvements to the Majorana nanowire model.
Even when including all the proposed improvements, the model still has its limitations,
of both a physical and computational nature. In some cases, alleviating the physical
limitation of the discretized model may turn into a computational limitation. For exam-
ple, we started with a model that is an approximation of the continuum Hamiltonian
(Eq. (1.31)), which is only valid in the low-energy limit. As an example, Fig. 1.13 shows
the band structure of both the discretized and continuum model for different lattice
constants of the spin part of the one-dimensional Majorana Hamiltonian (Eq. (1.30)).
Here, we observe that decreasing the lattice constant results in a better approximation
to the continuum model at higher densities. The computational complexity arises when

6Gap closings at k =π do not occur in our model.
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Figure 1.12: Energy spectrum at k = 0 of as a function of chemical potential µ. The orange circles are the real
eigenvalues of Eq. (1.50) lying at E = 0 (the orange line). The green circles are the solutions of HBdGψ= Eψ at
fixed µ marked by the green line. To find the phase transitions with the latter approach, one needs to sweep over
µ and find E(k = 0) < ε, where ε is the precision. Using the generalized eigenvalue problem, we find all phase
transitions at once. The parameters used are the same as Fig. 1.11 at Bx = 1T.

simulating full three-dimensional nanowires. Here, the typical length of the physical
nanowires is on the order of micrometers with a typical diameter of 100nm. The Fermi
wavelength λF sets a lower limit on the lattice constant a, which in the semiconductor is
typically around a = 5−10nm for the low-density regime. This means that systems easily
become larger than 1e6 sites, and including the spin and electron-hole degrees orbitals
results in matrices of 4e6×4e6. To calculate a phase diagram Egap(Bx ,µ) using this system,
we need to diagonalize this large matrix—which is an expensive operation by itself—many
times. In the case of strongly coupled superconductors, it becomes more problematic
because the wavefunction has most of its weight in the superconductor, which means
we have to simulate it on the level of its Fermi wavelength. Aluminum is typically used
as the superconductor and has a Fermi energy of EF ≈ 11.7eV, which translates into
λF ≈ 0.36nm. So, to properly simulate even the thin layer of superconducting material on
top of a nanowire, the lattice constant has to be smaller than an ångström, resulting in
matrix sizes that go far beyond the current capabilities of even the largest computers.
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Figure 1.13: The band structure of Eq. (1.30) (without superconductivity) for a lattice constant a = 10nm (top)
and a = 5nm (bottom), where we plot the continuum (green) and the discretized (orange) spectrum. The dotted
line indicates the Fermi energy. The tight-binding approximation remains valid whenever the two models result
in approximately the same spectrum below the Fermi energy.

1.6.6. ADAPTIVE SAMPLING

A partial solution to address the computational complexity, is to sample the parameter
space of the function we are evaluating adaptively. In Ch. 7, we develop adaptive parallel
sampling algorithms for low-dimensional (d / 4) parameter sweeps, adaptive integration,
and averaging stochastic functions. In our research, this typically sped up the simulations
by at least an order of magnitude in comparison with sampling on a homogeneous grid.

1.7. STRUCTURE OF THIS THESIS

Here, we give a brief overview of the topics explored in the following chapters.
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1.7.1. CHAPTER 2: ORBITAL EFFECT OF MAGNETIC FIELD ON THE MAJORANA

PHASE DIAGRAM

Studies of Majorana bound states in semiconducting nanowires frequently neglect the
orbital effect of a magnetic field. Systematically studying its role leads us to several conclu-
sions for designing Majoranas in this system. Specifically, we show that for experimentally
relevant parameter values the orbital effect of a magnetic field has a stronger impact
on the dispersion relation than the Zeeman effect. While Majoranas do not require the
presence of only one dispersion subband, we observe that the size of the Majoranas
becomes unpractically large, and the band gap unpractically small when more than one
subband is filled. Since the orbital effect of a magnetic field breaks several symmetries of
the Hamiltonian, it leads to the appearance of large regions in parameter space with no
band gap whenever the magnetic field is not aligned with the wire axis. The reflection
symmetry of the Hamiltonian with respect to the plane perpendicular to the wire axis
guarantees that the wire stays gapped in the topologically nontrivial region as long as the
field is aligned with the wire.

1.7.2. CHAPTER 3: SUPERCURRENT INTERFERENCE IN FEW-MODE NANOWIRE

JOSEPHSON JUNCTIONS

Junctions created by coupling two superconductors via a semiconductor nanowire in
the presence of high magnetic fields are the basis for the potential detection, fusion and
braiding of Majorana bound states. We study NbTiN/InSb nanowire/NbTiN Josephson
junctions and find that the dependence of the critical current on the magnetic field ex-
hibits gate-tunable nodes. This is in contrast with a well-known Fraunhofer effect, under
which critical current nodes form a regular pattern with a period fixed by the junction area.
Based on a realistic numerical model we conclude that the Zeeman effect induced by the
magnetic field and the spin-orbit interaction in the nanowire are insufficient to explain
the observed evolution of the Josephson effect. We find the interference between the
few occupied one-dimensional modes in the nanowire to be the dominant mechanism
responsible for the critical current behavior. We also report a strong suppression of criti-
cal currents at finite magnetic fields that should be taken into account when designing
circuits based on Majorana bound states.

1.7.3. CHAPTER 4: SPIN-ORBIT PROTECTION OF INDUCED SUPERCONDUC-
TIVITY IN MAJORANA NANOWIRES

Spin-orbit interaction (SOI) plays a key role in creating Majorana zero modes in semicon-
ductor nanowires proximity coupled to a superconductor. We track the evolution of the
induced superconducting gap in InSb nanowires coupled to a NbTiN superconductor in a
large range of magnetic field strengths and orientations. Based on realistic simulations
of our devices, we reveal SOI with a strength of 0.15–0.35 eVÅ. Our approach identifies
the direction of the spin-orbit field, which is strongly affected by the superconductor
geometry and electrostatic gates.
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1.7.4. CHAPTER 5: ROBUSTNESS OF MAJORANA BOUND STATES IN THE

SHORT-JUNCTION LIMIT

We study the effects of strong coupling between a superconductor and a semiconductor
nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time
in the normal part of the nanowire is much shorter than the inverse superconducting
gap. This “short-junction” limit is relevant for the recent experiments using the epitaxially
grown aluminum characterized by a transparent interface with the semiconductor and a
small superconducting gap. We find that the small superconducting gap does not have
a strong detrimental effect on the Majorana properties. Specifically, both the critical
magnetic field required for creating a topological phase and the size of the Majorana
bound states are independent of the superconducting gap. The critical magnetic field
scales with the wire cross-section, while the relative importance of the orbital and Zeeman
effects of the magnetic field is controlled by the material parameters only: g factor,
effective electron mass, and the semiconductor-superconductor interface transparency.

1.7.5. CHAPTER 6: ENHANCED PROXIMITY EFFECT IN ZIGZAG-SHAPED MA-
JORANA JOSEPHSON JUNCTIONS

High density superconductor-semiconductor-superconductor junctions have a small
induced superconducting gap due to the quasiparticle trajectories with a large momen-
tum parallel to the junction having a very long flight time. Because a large induced gap
protects Majorana modes, these long trajectories constrain Majorana devices to a low
electron density. We show that a zigzag-shaped geometry eliminates these trajectories,
allowing the robust creation of Majorana states with both the induced gap Egap and the
Majorana size ξM improved by more than an order of magnitude for realistic parame-
ters. In addition to the improved robustness of Majoranas, this new zigzag geometry is
insensitive to the geometric details and the device tuning.

1.7.6. CHAPTER 7: Adaptive: PARALLEL ACTIVE LEARNING OF MATHEMATI-
CAL FUNCTIONS

Large scale computer simulations are time-consuming to run and often require sweeps
over input parameters to obtain a qualitative understanding of the simulation output.
These sweeps of parameters can potentially make the simulations prohibitively expensive.
Therefore, when evaluating a function numerically, it is advantageous to sample it more
densely in the interesting regions (called adaptive sampling) instead of evaluating it
on a manually-defined homogeneous grid. Such adaptive algorithms exist within the
machine learning field. These methods can suggest a new point to calculate based on
all existing data at that time; however, this is an expensive operation. An alternative
is to use local algorithms—in contrast to the previously mentioned global algorithms—
which can suggest a new point, based only on the data in the immediate vicinity of a new
point. This approach works well, even when using hundreds of computers simultaneously
because the point suggestion algorithm is cheap (fast) to evaluate. We provide a reference
implementation in Python and show its performance.
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2.1. INTRODUCTION
The search for Majorana bound states, the simplest non-Abelian particles, is fueled by
their suitability for fault-tolerant quantum computation [1, 2]. A large fraction of the
experimental effort [3–7] is focused on creating Majoranas in semiconducting nanowires
with proximity superconductivity, spin-orbit coupling, and magnetic field. The theoretical
foundation for this platform was initially developed for a single one-dimensional spinful
band with intrinsic superconducting pairing [8, 9]. Due to its compactness this model
can be solved analytically, and it predicts that Majorana bound states appear when
E 2

Z >µ2 +∆2, when the Zeeman energy becomes larger than the harmonic mean of the
superconducting gap and the chemical potential.

The single-mode model is minimalistic and neglects many physical phenomena that
are crucial for understanding the properties of the Majorana bound states. The existing
extensions of this model study multimode wires [10], better modeling of the induced
gap [11, 12], the role of electrostatics [13], disorder [14–16], and the k ·p-model [17]. The
orbital effect of a magnetic field was analyzed both in planar wires [18, 19] and on the
surface of a cylinder [20].

We systematically study the influence of the orbital effect of a magnetic field on the
symmetries of the Hamiltonian and the topological phase diagram for a three-dimensional
(3D) nanowire. The orbital effect of a magnetic field perpendicular to the wire induces a
skipping orbit motion of the electrons. The cyclotron radius becomes comparable to the
typical wire diameters d ∼ 100nm already at the field of 0.3T, and at a chemical potential
corresponding to the optimal topological band gap. In addition, a field parallel to the
wire shifts the energies of each band due to the effect of magnetic flux. We expect the
shift of the energies to be comparable to the level spacing when the flux through the wire
diameter is of the order of a flux quantum. Our findings are very different from those of
Refs. [18–20] because we do not limit our analysis to a Hamiltonian with an artificially
high spatial symmetry, or low dimensionality.

2.2. MODEL
We consider a 3D semiconducting nanowire with Rashba spin-orbit coupling and proximity-
induced s-wave superconductivity. The nanowire cross section is a regular hexagon, and
the nanowire is translationally invariant in the x-direction. Its Bogoliubov-de Gennes
Hamiltonian (BdG) is

HBdG =
(

p2

2m∗ −µ
)
τz +α

(
pyσx −pxσy

)
τz + 1

2
gµBB ·σ+∆τx , (2.1)

and it acts on the spinor wave function Ψ = (
ψe↑,ψe↓,ψh↓,−ψh↑

)T , where ψe , ψh are
its electron and hole components, and ψ↑, ψ↓ are the spin-up and spin-down com-
ponents. We introduced the Pauli matrices σi acting on the spin degree of freedom
and τi acting on the electron-hole degree of freedom. Further p = −iħ∇+ eAτz is
the canonical momentum, with e the electron charge and the vector potential A =[
By (z − z0)−Bz (y − y0),0,Bx (y − y0)

]T chosen such that it does not depend on x. We
set the offsets y0 and z0 to ensure that the average vector potential vanishes in the super-
conductor. This choice corresponds to a limit when the superconductor is thinner than
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the screening length and its total supercurrent is zero, appropriate for existing devices.
Finally, m∗ is the effective electron mass, EZ =µBg B ·σ/2 the Zeeman energy,∆ the super-
conducting pairing potential, α the Rashba spin-orbit coupling strength, and µ=µ0 +E z
the chemical potential created by a constant electric field E in the sample parallel to the
z-axis, such that the Rashba spin-orbit acts in the x y-plane.

First we consider a model with a constant superconducting gap ∆ inside the wire
[see Fig. 2.1(a)] and then proceed to make a more realistic model of the superconductor.
To do that we set the superconducting order parameter ∆ to zero in the wire and add
a superconductor to the top which covers 3/8 of the circumference of the wire [see
Fig. 2.1(b)]. We choose the thickness of the superconductor to be 20nm and set ∆ in
the superconductor such that the induced gap of the lowest band is ∆ind = 0.250meV.
This is done by computing band energies at k = 0 over a range of µ and matching the
minimum to ∆ind. We add a tunnel barrier between the two materials to change the
transparency of the superconductor. In the setup of Fig. 2.1(c), we break the reflection
symmetry with respect to the xz-plane by moving the superconductor to the side similar
to the experimental setup of Mourik et al [3].

To perform the numerical simulations we discretize the Hamiltonian on a cubic
lattice with lattice constant a = 10nm, much smaller than the minimal Fermi wavelength
in the parameter range we consider. The discretization does not break or introduce
any additional symmetries. The Hamiltonian at a lattice momentum k equals H (k) =
h + t exp(i k)+ t † exp(−i k) where h is the Hamiltonian of the cross section of the tight-
binding system and t is the hopping matrix between the neighboring cross sections. We
introduce the vector potential by Peierls substitution tnm → tnm exp(−i e

∫
Ad l) [21]. We

perform the numerical simulations using the Kwant code [22]. The source code and the
specific parameter values are available in the Supplemental Material of [23]. The resulting
raw data are available in Ref. [24].

2.3. SYMMETRY ANALYSIS
The Majorana bound states are protected by the combination of the band gap and
the particle-hole symmetry of the Hamiltonian P H (k)P −1 = −H (−k). In the basis
of Eq. (2.1) this symmetry has the form P =σyτyK , with K the complex conjugation.
In general there are no additional symmetries and the Hamiltonian belongs to symmetry
class D [25]. Particle-hole symmetry only requires that the energy En(k) of n-th band at
momentum k is En(k) =−Em(−k) of some other m-th band; at the same time P puts no
constraints on En itself. This means that whenever En changes sign at a certain momen-
tum, the band structure becomes gapless. This tilting of the band structure [26] [shown
in the middle panels in Fig. 2.2, where En(k) 6= −Em(k)] is a strong effect that does not
vanish with superconducting gap or spin-orbit, and can easily become larger than the
induced gap, rendering the creation of Majoranas impossible.

The tilting of the band structure is absent if the Hamiltonian has an extra chiral
symmetry alongside P . It has been shown that the Hamiltonian has an approximate chiral
symmetry C H (k)C −1 =−H (k), C =σyτy , valid when the wire diameter d is smaller than
the spin-orbit length lso =ħ2/m∗α [27, 28], and By = 0. Then the pyσxτz term, associated
with the transverse motion in Eq. (2.1), is negligible. Without the tilting, the system is
gapped in every region of parameter space, except at the topological phase boundaries.
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Figure 2.1: Three hexagonal nanowire devices we consider: (a) with an intrinsic pairing term and with a
proximity-coupled superconductor (b) on the top and (c) on the side. The last two setups have tunnel barriers
between the superconductor and the nanowire.

However, for relevant experimental parameters [3], the orbital terms break this symmetry
more strongly than the spin-orbit term, bringing the system back to symmetry class D.

We perform a systematic search of symmetries that the Hamiltonian (2.1) may have. [29]
We find the reflection symmetry with respect to the y z-plane Rx H (k)R−1

x = H (−k),
Rx = σxδ(x + x ′). It is independent of the wire geometry and spin-orbit strength and
guarantees the absence of tilting whenever the field is aligned with the x-axis. The com-
bined symmetry P ′ = RxP is local in momentum space and ensures the absence of
band structure tilting: P ′H(k)P ′−1 =−H(k).

Additionally, we find a chiral symmetry C ′ = τyRy , C ′H (k)C ′−1 =−H (k), with Ry =
σyδ(y + y ′) the reflection with respect to the y-axis. This chiral symmetry holds when the
magnetic field lies in the xz-plane and none of the potentials in Eq. (2.1) break Ry , like in
the setups of Figs. 2.1(a) and 2.1(b). When present, C ′ guarantees the absence of band
structure tilting just like C . This symmetry is present in most theoretical models, and in
particular it is obeyed by the Hamiltonians used in Refs. [18–20]. A finite By breaks both
Rx and C ′ therefore, the bands can tilt and close the topological gap. The band structures
in Fig. 2.2 summarize the relation between the geometry of the setup of Figs 2.1(b) and
Fig. 2.1(c), magnetic field orientation, and the symmetries of the Hamiltonian.

2.4. CALCULATING THE TOPOLOGICAL PHASE DIAGRAM
We use an optimized algorithm to quickly find all the µ values corresponding to the topo-
logical phase transitions at once. The topological transitions in symmetry class D occur
when PfHBdG(k = 0) changes sign. 1 Since the sign change of PfHBdG is accompanied by
the appearance of zero energy states, we need to find µ and ψ such that H(µ,k = 0)ψ= 0.
Using that µ enters the Hamiltonian as a prefactor of a linear operator, we rewrite this
equation as a generalized eigenproblem:

HBdG
(
µ= 0,k = 0

)
ψ=µτzψ. (2.2)

The real eigenvalues of this eigenproblem are the values of µ where the gap closes at k = 0
[see Fig. 2.3(a)], and they can be found using standard generalized eigensolvers. If the

1The band gap closings at k =π can be treated identically, but they never appear in our model Hamiltonian.
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Figure 2.2: Band structures of the setup of Fig. 2.1(b) (top) and Fig. 2.1(c) (bottom). Each panel is labeled with
the symmetries respected by the corresponding Hamiltonian. The dashed black line indicates the Fermi energy
(E = 0). The red dashed lines show the size of the band gap if it is present. In the top row, the reflection symmetry
of the wire along the y-axis Ry makes the Hamiltonian have a chiral symmetry C ′ when the magnetic field lies
in the xz-plane. The wire used for the calculation of the bottom row dispersions lacks Ry and therefore has no
C ′. Without C ′ the bands are allowed to tilt and the gap may close whenever By 6= 0 or Bz 6= 0. A magnetic field
parallel to the x-axis preserves Rx , which protects the band gap from closing.
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dispersion relation is gapped also at any finite k, these gap closings are the boundaries of
the topological phase.

Since the eigenvalues of HBdG come in opposite sign pairs, the real eigenvalues of
Eq. (2.2) always come in degenerate pairs, and each pair lies at a transition between
a trivial and a nontrivial phase. We complete the calculation of the topological phase
diagram by using as a reference point that HBdG(µ=−∞) is topologically trivial.

The generalized eigenvalue algorithm for finding phase boundaries does not guaran-
tee that H(k) is gapped for k 6= 0, and therefore we calculate the magnitude of the gap
Egap in the topologically nontrivial regime separately for each set of parameter values.
We form a translation eigenvalue problem to calculate all the modes of HBdG at a given
energy E and check whether there are any propagating modes [22]. By using a binary
search in E for the energy at which the propagating modes start to appear, we find Egap

[see Fig. 2.3(b)].
The real space size of the Majoranas ξ imposes a lower bound on the nanowire length

required to create them. To calculate ξ we find the eigenvalue decomposition of the trans-
lation operator at zero energy. The eigenvalue λmin closest to the unit circle corresponds
to the slowest decaying part of the Majorana wave function. We calculate ξ using

ξ= |log−1|λmin||. (2.3)

2.5. RESULTS
We use realistic parameters of an InSb nanowire [3]: α = 20meVnm, m∗ = 0.015me ,
∆ = 0.250meV, d = 100nm, and g = 50. At the high fields that are typically used in
experiment (B & 1T), we find that the Zeeman effect of the magnetic field has a lower
impact on the phase boundaries than the orbital effect of the magnetic field (see Fig. 2.4).
We verify that the band gap is protected by C ′ as long as By = 0, despite that the orbital
effect of the magnetic field reduces Egap.

In agreement with our expectations a finite By . 0.1T leads to the closing of the band
gap (see Figs. 2.2 and 2.5). The maximum tolerable By becomes smaller with increasing
µ. The narrow regions with suppressed Egap visible in Figs. 2.4(c) and 2.4(d) are the
consequence of Dirac cones appearing in (kx ,B)-space and are protected by C ′. Breaking
Ry breaks C ′ and removes these Dirac cones.

We now turn to study the system shown in Fig. 2.1(c) that has C ′ strongly broken and
only Rx and P remaining. Since the induced superconducting gap ∆ind ≈ 250µeV in
Ref. [3] is much smaller than the NbTiN gap 2meV, the system must be in the long junction
limit, where ETh ¿∆. In the long junction limit the induced gap equals ∆ind ≈ħT vF/d ,
where T is the transparency of the tunnel barrier, and vF the Fermi velocity. In the
absence of the orbital effect of a magnetic field, this means that the Zeeman energy has to
exceed ∆ind and therefore the critical value of the magnetic field at which the gap closes
strongly depends on µ as seen in Fig. 2.6(a). With the orbital effect of the magnetic field
flux, penetration through the quasiparticle trajectory changes the interference phases,
which suppresses the induced gap and causes the topological phase transitions to occur
at a value of B corresponding to a single flux quantum penetrating the wire area [see
Fig. 2.6(b)].
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Figure 2.3: (a) Energy spectrum at k = 0 of the setup of Fig.2.1(a) as a function of chemical potential µ. The
blue points are the solutions of HBdGψ= Eψ at fixed µ marked by the blue line. The green points are the real
eigenvalues of Eq. (2.2) lying at E = 0 (the green line). (b) The gap size for the same setup and parameters, with
dark gray regions trivial and the orange regions topological.
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Figure 2.4: Phase diagrams of the setup of Fig. 2.1(a) (a), (b) without the orbital effect of a magnetic field and
(c), (d) with it. The green lines depict the topological phase transitions. The colored regions are topologically
nontrivial, with the color representing the size of the topological band gap Egap. At B & 1T the orbital effect of
the magnetic field becomes stronger than the Zeeman effect and changes the sign of the slope of half of the
phase boundaries. Furthermore, the orbital effect leads to a faster suppression of the band gaps with magnetic
field. The narrow regions with suppressed Egap originating from the crossings of the phase boundaries in (c) are
due to Dirac cones appearing in (kx ,B)-space and are protected by C ′. The vertical black line in (a) indicates the
value of the magnetic field used in Fig. 2.3.
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Figure 2.5: Same as Fig. 2.4, but with the magnetic field slightly misaligned. We observe that the band gaps close
quickly upon changing the direction of the magnetic field towards the spin-orbit direction in y .

The Majorana decay lengths ξ significantly increase when including the orbital effect
of the magnetic field in the Hamiltonian (see Fig. 2.7). Specifically, the mode of the
distribution of ξ changes by a factor of ∼ 4 in the parameter range we consider (see
histograms in Fig. 2.7). However, the minimum values of ξ without orbital effect and with
it are both ≈ 200nm. Therefore, µ needs to be tuned with sub-meV precision within the
lowest band in order to create Majorana bound states with practically relevant parameters.

To investigate the effect of the spin-orbit coupling on the Majorana properties in the
presence of an orbital field, we have repeated the calculations shown in Figs. 2.6 and 2.7
using a fivefold larger spin-orbit strength reported in Ref. [30]. We find that the topological
band gap increases overall and in particular the maximal gap grows from 0.14meV to
0.21meV, while the minimal decay length remains almost the same. Therefore, increasing
spin-orbit strength has a positive but not very strong effect on the topological band gap.

2.6. DISCUSSION AND CONCLUSIONS
We have shown that the orbital effect of a magnetic field complicates the creation of
Majoranas in nanowires. Orbital terms break the chiral symmetry C and prevent the
appearance of Majoranas whenever the magnetic field is not aligned with the wire axis.
When the field does point along the x-axis, we find that the reflection symmetry Rx in
combination with particle-hole symmetry P protects the band gap from closing every-
where in (B ,µ)-space, except at the topological phase boundaries. At experimentally
relevant values of magnetic field, the orbital effect has a stronger impact on the dispersion
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Figure 2.6: Phase diagrams of the setup of Fig. 2.1(c) (a) without the orbital effect of a magnetic field and (b) with
it. Color scale corresponds to Egap, with the topological regions colored and trivial regions in grayscale. The
histograms in the right-hand panels show the distribution of the gap values sampled in the topological regime
within the selected parameter range. Neglecting the orbital effect of the magnetic field incorrectly leads to a
strong dependence of the critical field on µ. With the orbital effect of magnetic field flux penetration through
the quasiparticle trajectory changes the interference phases and can suppress the topological gap Egap.
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Figure 2.7: Same as Fig. 2.6, but with color representing inverse Majorana length ξ−1. The histogram and color
scales are truncated from above at 1µm−1. The mode of the distribution of ξ−1 reduces from 0.35µm−1 to
0.10µm−1 upon taking the orbital effect into account. Although the Majorana lengths are overall much larger
with the orbital effect of the magnetic field, the minimal length is close to 200nm in both cases.
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relation than the Zeeman effect. Furthermore, the orbital effect suppresses Egap and in-
creases ξ. However, the maximum value of the Egap in the topologically nontrivial region
does not change as drastically (from 0.21meV to 0.14meV) and the minimal decay length
changes even less (from 201nm to 210nm). The reflection symmetry Rx of the Hamil-
tonian that we consider is respected by any Rashba spin-orbit interaction. Dresselhaus
spin-orbit coupling breaks Rx ; however, it is expected to be weak in the nanowires.

Our simulations can be made more complete by complementing them with self-
consistent electrostatics and magnetic field screening by the superconductor. An addi-
tional extension of our work is to go beyond the effective mass approximation and to use
the k ·p model. A separate topic of study is the interplay between the orbital effect of the
magnetic field and disorder. We expect that the sensitivity to disorder will increase by
taking the orbital effect of the magnetic field into account.

Our results suggest that keeping the chemical potential low is required to obtain
Majoranas with reasonable length and energy scales. Furthermore, our findings reveal
a complication in realizing more sophisticated Majorana setups, such as a T-junction
required for braiding. This is because of the requirement that the field should be aligned
with the nanowire. A possible strategy to reduce the undesirable orbital effect of the
magnetic field is to use nanowires with smaller diameters at a cost of reduced electric
field effect and increased disorder sensitivity.
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3.1. INTRODUCTION
Semiconductor nanowires coupled to superconductors form a promising platform for
generating and investigating Majorana bound states [1–7]. Josephson weak links based
on nanowires may provide additional evidence for Majorana bound states, e.g. through
the fractional Josephson effect [8–10]. These weak links can also become elements of
Majorana-based topological quantum circuits [11–14]. Previous work on semiconductor
nanowire Josephson junctions demonstrated supercurrent transistors [15], transport
through few channels [16], a nonsinusoidal current-phase relationship [17], nanowire
superconducting quantum interference devices (SQUIDs) [18, 19], and gate-tunable
superconducting quantum bits [20, 21]. Recent works reported Josephson effects at high
magnetic fields, sufficient to generate unpaired Majorana bound states [19, 22–24].

In this chapter we study the critical current as a function of the magnetic field and gate
voltage in nanowire Josephson junctions tuned to the mesoscopic few-mode regime. The
junctions consist of InSb weak links and NbTiN superconductor contacts. For magnetic
fields parallel to the nanowire, we observe a strong suppression of the critical current at
magnetic fields on the scale of 100mT. When the magnetic field exceeds ∼ 100mT, the
critical current exhibits aperiodic local minima (nodes). In contrast with supercurrent
diffraction in large multimode junctions, the magnetic field nodes of the critical current
are strongly tunable by the voltages on local electrostatic gates, and are not uniquely
determined by the junction geometry and supercurrent density distribution. To under-
stand our data, we develop a numerical model of a quasiballistic few-mode nanowire
of realistic geometry. Our model includes the intrinsic spin-orbit effect, as well as the
vector-potential and Zeeman effects of the external magnetic fields. Based on the simula-
tions, we conclude that quantum interference between supercurrents carried by different
transverse modes is the dominant mechanism responsible for both the critical current
suppression, and the gate-sensitive nodes in the critical current.

3.2. EXPERIMENTAL SETUP
Figure 3.1(a) presents a schematic of a few-mode nanowire Josephson junction. The
inset of Fig. 3.1(b) shows a device similar to those used in this study and their fabrication
process is described in Ref. [4]. The junction consists of an InSb nanowire with a diameter
of 100±10nm with 80 nm thick dc magnetron sputtered NbTiN contacts. The wire sits
on top of an array of 50 or 200nm wide gates isolated from the junction by a dielectric.
We report data from devices 1 and 2 in the main text and show additional data from
device 3 in the appendix. Device 1(2) has a contact spacing of ∼ 1µm(∼ 625nm) and
the nanowire is at an angle of 25◦±5◦(0◦±5◦) with respect to B . Device 3 has a shorter
contact spacing of ∼ 150nm and shows similar behavior of gate-tunable nodes but the
initial critical current decay is extended to 400 mT. The measurements were performed
in a dilution refrigerator with a base temperature of ∼ 60mK. All bias and measurement
lines connected to the device are equipped with standard RC and copper powder filtering
at the mixing chamber stage to ensure a low electrical noise environment. The voltage
measurements are performed in the four-terminal geometry.

We set all the gates underneath the nanowire to positive voltages, in the few-mode
transparent regime in which no quantum dots are formed between the superconducting



3.3. SUPERCURRENT MEASUREMENTS AS A FUNCTION OF MAGNETIC FIELD

3

49

S S3
3

2
2

1
1

©
(a)

(b)
I
b
ia

s
[n

A
]

d
V

/d
I
[k
Ω
]

0

5

10

15

-1

0

1

2

0 0.5 1.0 1.5 2.0

B [T]

Figure 3.1: (a) Schematic superconductor (S)-nanowire-S Josephson junction. The cross section shows cartoon
wave functions of n = 3 transverse modes and the fluxΦ penetrating the area of the nanowire. The blue arrows
indicate spin-resolved modes; the black dashed arrows are same-spin scattering events within the wire. All
modes are coupled at the contacts. The directions of B and the spin-orbit effective field BSO are indicated.
(b) Differential resistance dV /dI versus B and Ibias. The current bias sweep direction is from negative to
positive. Data from device 1. Inset: SEM image of a typical device similar to those studied here. S labels the
superconducting contacts while B indicates the in-plane magnetic field for device 2.

contacts, and the normal state conductance exceeds 2e2/h (see the full gate trace of the
supercurrent in the appendix).

3.3. SUPERCURRENT MEASUREMENTS AS A FUNCTION OF MAG-
NETIC FIELD

Figure 3.1(b) shows a typical example of the differential resistance dV /dI as a function of
the magnitude of the magnetic field B and the current bias Ibias in this few-mode regime,
with low resistance supercurrent regions in dark blue around zero current bias. Note that
the data at low field are asymmetric with respect to current reversal. Only one sweep
direction is plotted for the rest of the figures.

A strong decrease of the switching current is observed from B = 0T to B = 100−200mT.
Beyond the initial decrease, the critical current exhibits nonmonotonic behavior with
multiple nodes and lobes. Despite the 1µm contact separation, the supercurrent can be
resolved up to fields as high as B = 2T, which is comparable to the estimated strength of
the effective spin-orbit field BSO. At finite magnetic fields where the Josephson energy
is suppressed the sharp switching behavior is replaced with a smooth transition to a
higher resistance state. In voltage-biased measurements, this manifests as a zero-bias
conductance peak (see appendix). This signal can mimic the onset of the topological
phase since it is also associated with the zero-bias conductance peak that appears at a
finite magnetic field.
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Figure 3.2: (a)-(d) dV /dI vs B and Ibias for different gate voltage settings Vg indicated above each panel. Data
from device 2; see the appendix for the scanning electron micrograph of the device with the tuned gate marked.

3.4. POSSIBLE MECHANISMS CAUSING SUPERCURRENT OSCIL-
LATIONS

We now qualitatively discuss the possible explanations for the behavior observed in
Fig. 3.1(b). Zeeman splitting can induce 0−π-junction transitions which result in an oscil-
latory Josephson energy as a function of the magnetic field [25–27]. This alternating 0−π
junction behavior is due to spin-up and spin-down channels acquiring different phases
as they travel across the junction [Fig. 3.1(a)]. However, in our junctions a strong spin-
orbit effective field, which has been reported to point perpendicular to the nanowire [28],
reduces the relative phase shifts of spin-up and spin-down and lifts the nodes in the super-
current [29–31]. For the spin-orbit strength previously reported in InSb nanowires [28, 32],
we estimate an effective spin-orbit field BSO ∼ 1−2T for a chemical potential value in the
middle of the subband. Therefore, we do not expect the occurrence of 0−π-transitions
in ballistic nanowires for fields much lower than this typical value of BSO, unless the
chemical potential is close to a transverse mode edge (within 1−2meV), where BSO is
suppressed. Given the typical mode spacing of 10−20meV [33, 34], in combination with
the occurrence of several nodes well below 1 T, the Zeemanπ-junction effect is an unlikely
explanation for all of the critical current nodes observed here for generic device settings.

Supercurrents carried by different transverse modes would also acquire different
phase shifts and interfere due to mode mixing within the wire or at the contact between
the nanowire and the superconductor lead [35]. Such an interference is analogous to
the Fraunhofer effect in wide uniform junctions: it becomes relevant when a single
superconducting flux quantum is threaded through the nanowire cross section, a regime
that is reached for B ≈ 0.25T, well within the range of the present study. A comparison of
the experimental and numerical data in this chapter suggests that this is the effect that
dominates the magnetic field dependence of the critical current.

Transitions in and out of the topological superconducting phase in the nanowire
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segments covered by the superconductors were also predicted to induce reentrant critical
current [36]. Although we used devices similar to those presented in recent Majorana
experiments [4, 7, 37], here we did not gate tune the regions of the wire underneath the
superconducting contacts into the topological regime. An accidental topological regime
occurring on both sides of the junction in multiple devices is an unlikely explanation for
the generic observations reported here.

3.5. SUPERCURRENT EVOLUTION WITH MAGNETIC FIELD AND

GATE POTENTIAL
Figure 3.2 shows a typical sequence of magnetic field dependences of the critical current,
obtained by adjusting one of the narrow local gates. The critical current exhibits multiple
nodes [Fig. 3.2(d)], just a single node [Fig. 3.2(c)], or no node [Fig. 3.2(a)] in the same field
range. At some nodes the critical current goes to zero, while a nonzero supercurrent is ob-
served at other nodes. No periodic patterns such as those characteristic of a dc-SQUID or
a uniform junction are observed. Note that slight changes in the gate voltage are sufficient
to dramatically alter the magnetic field evolution curve; the corresponding change in
chemical potential∆µ is small (∆µ< 1meV) compared with the typical intermode spacing
(∼ 15meV). Furthermore, the gate used only tunes a 100 nm segment of the 650 nm long
junction.

Typical gate sweeps of the supercurrent are presented in Fig. 3.3. The critical current
is strongly reduced at fields above 100 mT irrespective of the gate voltage. At all fields, the
supercurrent is strongly modulated by the gate voltage. However, gate voltages at which
nodes in the critical current occur differ for each magnetic field. Thus, no straightforward
connection can be made between the zero-field critical current and node positions at a
finite field, see also Fig. 3.5(a).

3.6. THEORETICAL MODEL
In order to understand the magnetic field evolution of the Josephson effect, we develop
an effective low-energy model of a spin-orbit and Zeeman-coupled few-mode nanowire,
covered by superconductors at both ends. We define x as the direction along the wire, y
perpendicular to the wire in the plane of the substrate, and z perpendicular to both wire
and substrate. The corresponding Hamiltonian reads

H =
(

p2

2m∗ −µ+δU

)
τz +α(pxσy −pyσx )τz

+ gµB B ·σ+∆τx . (3.1)

Here p =−iħ∇+eAτz is the canonical momentum, where e is the electron charge, and

A = [
By z −Bz y, 0, Bx y

]T is the vector potential chosen such that it does not depend on
x. Further, m∗ is the effective mass, µ is the chemical potential controlling the number
of occupied subbands in the wire, α is the strength of Rashba spin-orbit interaction, g
is the Landé g -factor, µB is the Bohr magneton, and ∆ is the superconducting pairing
potential. The Pauli matrices σi and τi act in spin and electron-hole spaces, respectively.
We assume that the electric field generated by the substrate points along the z direction,
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0

5

10

15

20(a)
orbital + SOI SOIorbital Zeeman only orbital + SOI + disorder, l

mfp= 250 nm (6x)

0

20

40

60

80

100

I c
[n

A
]

(c)

0.0 0.1 0.2 0.3 0.4 0.5
B [T]

(b)

0.0 0.1 0.2 0.3 0.4 0.5
B [T]

0g
s

(d)

I c
[n

A
]

¼

¼

µ

g
s

µ

-

0

¼

¼

-

Figure 3.4: Critical current and corresponding ground state phase difference for different combinations of terms
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such that the Rashba spin orbit acts in the x y-plane, which is at low energies equivalent
to an effective magnetic field BSO ∥ ŷ . We include the vector potential in the tight-binding
system using the Peierls substitution [38]. Finally, we include an uncorrelated on-site
disorder δU ∈ [−U ,U ], with U the disorder strength, which we parametrize by a normal
state mean free path lmfp [39].1

We perform numerical simulations of the Hamiltonian (3.1) on a 3D lattice in a realis-
tic nanowire Josephson junction geometry. The critical current is calculated using the
algorithm described in Ref. [40] and the Kwant code [41]. We note that for moderately
damped and overdamped Josephson junctions, such as those studied here, the theoretical
Ic closely follows the experimentally measured switching current [42]. The source code
and the specific parameter values are available in the appendix. The full set of materials,
including computed raw data and experimental data, is available in Ref. [43].

3.7. DISCUSSION
Numerical results are presented in Figs. 3.4 and 3.5(b). First, we discuss the case of only a
single transverse mode occupied [Figs. 3.4(a) and 3.4(b)], which is pedagogical but does
not correspond to the experimental regime. When all field-related terms of Eq. (3.1) are
included (A 6= 0, α 6= 0), we observe a monotonic decay of the critical current much more
gradual than in the experiment, due to the absence of the intermode interference effect
in the single-mode regime. The π-junction transitions do not appear up to fields of order
0.5T due to the strong spin-orbit effective field, which keeps spin-up and spin-down at
the same energy so that they acquire the same phase shifts traversing the junction. The
critical current eventually decays because the Zeeman term overtakes the spin-orbit term
at fields greater than 0.5 T. When the spin-orbit term is turned off (α= 0), we see several
0−π transitions taking place within the studied field range, confirmed by the ground state
phase switching between 0 and π at a series of magnetic fields [Fig. 3.4(b)].

The experimentally relevant regime is when several transverse modes are occupied.
The measurements display three qualitative features: (i) the initial critical current at
B = 0T is strongly suppressed within 100−200mT; (ii) the critical current then revives and
continues to display nodes of variable depth and periodicity; (iii) this revival of the critical
current after suppression is about 10% of its original value at B = 0T. Models that neglect
the orbital effect display either a slow monotonic decay of the critical current (spin-
orbit included, α 6= 0), or regular critical current nodes due to 0−π transitions (no spin-
orbit, α= 0) [Fig. 3.4(d)], as in the single-mode case. When orbital effects are included,
A 6= 0, observations (i) and (ii) are reproduced but the revival of the critical current after
initial suppression is still strong. Inclusion of a realistic amount of disorder, which
creates additional interference paths and suppresses supercurrent further, reproduces all
observations (i), (ii), and (iii). Thus, we conclude that the experiment is best reproduced
when A 6= 0,α 6= 0 and weak disorder that induces intermode scattering is included within
the junction model.

The inclusion of disorder in the multimode regime breaks mirror symmetry [30, 31]
and generates a spin-orbit field along the external magnetic field B, which gives rise

1To determine lmfp we calculate a disorder-averaged normal state conductance g and evaluate the mean
free path lm f p by fitting, g = g0Nch/(1+ L/lmfp), with Nch the number of conduction channels, and g0
conductance quantum.
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Figure 3.5: Comparison between experimental (a) and numerical (b) results. The parameters for the numerical
simulations are the same as in Figs. 3.4(c) and 3.4(d), red curve. The range of the chemical potential in the gated
region (µgate) is chosen using Ref. [44]. The experimental data are taken with device 2.

to a nonsymmetric current-phase relation, inducing a ϕ0 junction (see Sec. 3.9.8 for
a detailed explanation). The ground state phase of the ϕ0 junction can continuously
change between 0 and π [red trace in Fig. 3.4(d)]. Experimental verification of such phase-
related effects is not possible in the two-terminal junction geometry used here, it requires
phase-sensitive experiments in the SQUID geometry.

In Fig. 3.5 we compare side-by-side experiment and simulations via field-versus-gate
maps of the supercurrent. In Fig. 3.5(a), the switching current from a set of dV /dI versus
Ibias traces similar to those in Fig. 3.3 was extracted from device 2 (see the appendix for
algorithm details). Beyond the decay of the switching current on the scale of 100mT, the
experimental data show a complex evolution of switching current maxima and minima in
gate-field space. Characteristic features of this evolution are reproduced by our simulation
shown in Fig. 3.5(b). In particular, the experimentally observed magnetic field scale
of initial supercurrent decay is reproduced in the simulation. Furthermore, the gate-
tunable maxima and minima of the critical current are recovered in our model; both
in experiment and simulation these do not evolve in a regular fashion (a consequence
of the complexly shaped interference trajectories). This qualitative agreement found
additionally substantiates the applicability of our model to the experimental results.

3.8. CONCLUSIONS
Our results are instrumental for modeling Majorana setups. Specifically, the decrease
of Josephson energy by an order of magnitude is observed at fields at which the onset
of topological superconductivity is reported. This effect should, therefore, be taken
into account in efforts to realize recent proposals for fusion and braiding of Majorana
fermions [11–14], especially in those that rely on controlling the Josephson coupling [11,
12, 14]. Our findings are applicable not only to bottom-up grown nanowires and networks
but also to scalable few-mode junctions fabricated out of two-dimensional electron
gases [45, 46]. We suggest that in such devices narrow multimode nanowires should
be used. At the magnetic field strengths required for braiding the many modes would
facilitate strong Josephson coupling, whereas a small diameter prevents its suppression
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Figure 3.6: (a) Device current as a function of gate voltage, Vbias = 10 mV. Except the gate that is varied in this
scan, other gates are at +3 V. (b) Voltage-current characteristic for both upwards (blue) and downwards (red)
sweeping direction of current bias. The supercurrent of 8 nA is the maximum supercurrent observed in this
device and corresponds to all gates at +3V. (c) Numerical derivative dV /dI of V (I ) as function of current and
gate voltage. Current bias is swept from negative to positive.

due to supercurrent interference.
Phase-sensitive measurements in the SQUID loop geometry will reveal effects such

as the Zeeman-induced π junction and the spin-orbit induced ϕ0 junction, which our
study identifies numerically but does not access experimentally. Single quantum mode
junctions are within reach thanks to the recent demonstration of quantum point contacts
in InSb nanowires at a zero magnetic field [34]. In that regime phenomena such as induced
p-wave superconductivity can be studied in a unique gate-tunable setup, when tuning
down to a single spin-polarized mode in the weak link. The results are also applicable to
other interesting material systems where spin-orbit, orbital, and Zeeman effects interplay
- systems such as Ge/Si, PbS, InAs, and Bi nanowires and carbon nanotubes [47].

3.9. APPENDIX

3.9.1. ZERO FIELD GATE DEPENDENCE
Characterization of device 2 at B=0 T is shown in Fig. 3.6, devices 1 and 3 behave similarly
(data not shown). Current versus local gate voltage is measured at Vbias = 10 mV (Figure
3.6(a)). Taking known series resistances into account, the device resistance of ∼6 kΩ is
found, corresponding to the sum of the conduction channels and contact resistances.

As shown in Fig. 3.6(b), by optimizing the gate voltages a maximal supercurrent of 8 nA
was found, with a corresponding voltage of 32 µV, which developed upon switching to the
normal state. The junction is hysteretic as shown by the low retrapping current, and has a
sharp transition to the normal state, indicating that the junction is in the underdamped
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regime. Note that self-heating may also contribute to the hysteresis [48].

3.9.2. SHAPIRO STEP MEASUREMENTS

Device 2 has been cooled down a second time with a microwave antenna near the sample.
This enabled the study of Shapiro steps in the junction as a function of microwave power
and frequency, see Fig. 3.7. The device is again tuned to a multi-mode regime, comparable
to Vgate = 0.5 V in Fig. 3.6(c). Due to an increased microwave background noise in the
vicinity of the junction upon adding the antenna, an extra rounding of the V (I )-trace
near the switching bias is present.

Figure 3.7(a) is a magnetic field B dependence of supercurrent in the absence of
microwave drive. The supercurrent pattern as a function of B is similar to the one shown
in Fig. 3.2. This indicates that thermally cycling the device did not change the qualitative
behavior of the device, although the exact gate tunings are different.

We focus on the power dependence of Shapiro steps at different B strengths of 0mT,
100mT, 200mT and 300 mT corresponding to Fig. 3.7(c), (e), (f), (g) respectively. The
microwave frequency is kept fixed at 2.0 GHz. Shapiro steps show up at voltages corre-

sponding to V = n · h f
2e , where n may be a fraction. At B = 0 mT [Fig. 3.7(c)], half integer

steps are only weakly present. At B = 100 mT [Fig. 3.7(e)], not only n = 1/2 steps but also
weak n = 1/4 steps are visible (not marked with circled number). This is clearly visible
in Fig. 3.7(h), where the same data is plotted in a voltage histogram, with high voltage
counts corresponding to the plateaus of the Shapiro steps.

The B = 200 mT and B = 300 mT cases [Fig. 3.7(f), (g)] correspond to low critical
currents. Nevertheless, Shapiro steps can still be resolved. At B = 200 mT, which is closest
to the minimum of critical current, the width of the 1/2 step is more than half the width
of the 1st step, and it is similarly large compared to the 1st step at 300 mT. Fig. 3.7(i), (j)
are the histogram representations of Fig. 3.7(f), (g).

Shapiro steps at fractional frequencies, especially the half-integer steps, have been
previously observed in Josephson junctions under various conditions [49–53]. For in-
stance, they can arise due to Josephson coupling of higher orders accompanied by a
non-sinusoidal current-phase relationship [54]. In quasi-ballistic few-mode Josephson
junctions the current-phase relation is expected to be non-sinusoidal, consistent with
half-integer Shapiro steps observed here even at zero magnetic field. The higher order
1/4-steps are more exotic and deserve a deeper study in the future, though they may
also originate from a non-sinusoidal current-phase relationship. Non-sinusoidal current-
phase relationships are obtained within our model, see Fig. 3.13. However, Fourier
analysis of the simulation suggests that Shapiro steps at 1/3 the Josephson voltage should
dominate over 1/4 steps. This discrepancy remains not understood.

In a non-sinusoidal Josephson junction tuned to the 0−π transition the first order
Josephson effect which is responsible for strong integer Shapiro steps vanishes, thus the
current phase relationship is dominated by higher harmonics. In this case, Shapiro steps
at half-integer and integer frequencies are expected to appear with the same step widths.
The results presented here show that the ratio of step widths for half integer to integer
steps indeed increases near a field-induced node in the critical current. However, the
results are not conclusive as to whether this is due to a 0−π transition.

On the other hand, Majorana zero modes coupled across a junction barrier are pre-
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Figure 3.7: Shapiro steps in magnetic field. (a) B dependence of supercurrent without microwave radiation
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Figure 3.8: Differential resistance measured as a function of current bias and magnetic field strength of device 3.
The angle indicated in each panel is the angle of the magnetic field relative to the wire axis, in the plane of the
substrate.

dicted to result in disappearing odd-integer Shapiro steps [2, 3]. Thus the behavior
observed here is opposite to that expected due to Majorana modes: extra fractional steps
in addition to integer steps are observed.

3.9.3. ANGLE DEPENDENCE OF FLUCTUATIONS

In this section we present results from device 3 [Fig. 3.9(c)] with contact spacing of 150 nm
on which we performed current bias measurements with similar conditions as reported
in the main text. Device 3 is fabricated with similar methods as device 1 and 2, with the
exception that HfOx is used as the dielectric material instead of SiNx .

The device shows a monotonic decrease of the critical current for magnetic field
values up to 400 mT (not shown in the figure). This extended initial decay is attributed to
the shorter contact separation, and hence reduced influence of disorder on intermode
interference.

Beyond 400 mT, the critical current fluctuates at a period depending on the direction
of the magnetic field. Figure 3.8 shows the differential resistance of the device for three
different field directions. The top panel shows data where the field is pointed along
the nanowire. The critical current decays until the field reaches 600 mT, beyond which
it exhibits a weakly pronounced maximum and disappears at 900 mT after which it
reappears again. As the field angle is rotated in the plane of the substrate [Figs. 3.8(b),(c)],
the critical current decays faster as a function of the field strength, and the subsequent
nodes of the critical current are closer spaced in field. We associate this behavior with
increased flux through the nanowire at finite angles between the field and the wire.
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Figure 3.9: Schematics based on SEM picture of device 1, device 2 and device 3. (a) Device 1, with an angle of
25◦±5◦ with the magnetic field. In all devices, not all local gates are operated independently: as indicated in
the figures, larger gates are formed by shorting some of the local gates together, e.g G1. (b) Device 2, shown
with the superconducting electrode design superimposed on top of the SEM image, as this device has not been
imaged after the final fabrication step. The device has a contact spacing of ∼ 625nm, with the wire at an angle
of 0◦±5◦ with respect to magnetic field. (c) Device 3, incorporating two quasi-particles traps (Au) next to the
superconducting contacts. The length of the Josephson junction is ∼ 150nm. Device 3 is cooled down in a setup
where the magnetic field could be rotated using a 3D vector magnet.

3.9.4. ZERO BIAS PEAKS DUE TO SUPERCURRENT CAN ONSET AT FINITE MAG-
NETIC FIELD

If the Josephson junctions are tuned into the topological regime, devices used in this
study can also support Majorana fermions. As a matter of fact, such a design is employed
by several groups for the purpose of searching for Majorana zero modes. Here we show
that such Josephson junction based devices, even if the contacts are almost 1µm apart,
cannot be used for unambiguous detection of Majorana zero modes [55–57]. Specifically,
we observe that, in a voltage-biased measurement, supercurrent can appear as a zero-bias
peak that onsets at a finite magnetic field, in the same range of parameters as those used
in Majorana experiments, thus mimicking a key Majorana signature.

Figure 3.10 shows the results. By applying a negative voltage to one of the local gates
in between the superconducting contacts, a tunneling regime comparable to Vgate < -0.5
V shown in Fig. 3.6(a) for device 2 is achieved. The result of a current biased measure-
ment in this regime is shown in Fig. 3.10(a), a very small (down to 1 pA) supercurrent
could be resolved. Interestingly, for gate regimes with lower resistance the supercurrent
initially grows as expected, but then the dV /dI peak related to the switching current
broadens and is no longer visible. Here, we focus on the B dependent behavior as shown
in Fig. 3.10(b),(c),(d) at a gate voltage indicated by the yellow line in Fig. 3.10(a). At B = 0T,
no supercurrent was resolved in a current biased measurement, but upon increase of
magnetic field, at around 200 mT, a small supercurrent shows up in a slightly more re-
sistive regime. Such a small supercurrent may show up in a differential conductance
measurement as a small zero bias peak (ZBP). Indeed, upon switching to a voltage biased

differential conductance measurement, a small ZBP with height ∼ 0.01 2e2

h is found. Note
that the ranges in which the supercurrent is visible in a current biased measurement and
in which the ZBP is visible in a voltage biased measurement are not identical due to a
minor charge switch between the two measurements.
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Figure 3.10: Supercurrents and zero bias peaks at finite B . (a) Differential resistance vs gate. In this scan, one of
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gate position in (a). (c) Linecut from (b) at B = 0.25T. (d) Differential conductance vs B corresponding to (b).
Numerical derivative of original V (I ) curves is shown in (a) and (b). Data from device 1.
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3.9.5. EXTRACTING SWITCHING CURRENT FROM EXPERIMENTAL DATA
To obtain Fig. 3.5(a), switching currents are extracted from a large set of voltage-current
characteristics by numerically detecting the voltage step upon switching from the super-
conducting to the resistive regime. First, an initial low-pass filter is applied to the data
reducing spurious fast fluctuations. Next, a numerical derivative of the V (I )-curve is
taken. This first derivative has a clear maximum for an V (I )-curve with a sharp transition,
allowing for straightforward identification of the switching current. However, the finite
B-field V (I )-curves typically display smooth transitions from the superconducting to
the resistive state, resulting in unclear or even absent maximums in the first derivative.
A smooth transition still generates a maximum of the second derivative, allowing for
identification of the switching current. We, therefore, introduced a threshold for a first
derivative maximum, below which a second derivative is taken of the V (I )-curve with its
maximum identified as the switching current. A second threshold is introduced for the
maximum of the second derivative, below which the switching current is considered to be
zero. Algorithm parameters are optimized to both correctly identify the sharp transitions
of large switching currents and to avoid false positives of small switching current.

3.9.6. DETAILS OF THE MODELING
We discretize the Hamiltonian Eq. (3.1) on a cubic lattice with a lattice constant of a =
8nm. The nanowire cross section has a diameter of 104nm and the superconductor on top
of the semiconductor nanowire adds two more layers of unit cells partially covering the
nanowire (135◦ of the wire’s circumference). There are 3 free parameters in the simulation
for obtaining the correct induced gap in the nanowires, namely the coverage angle of the
superconductor, the tunnel barrier between the SC and the SM, and the superconducting
gap. The coverage angle is fixed at 135◦ in order to save computational time. Since the
Meissner effect is not included in the simulation, the exact value of the angle does not
play a critical role. The superconducting order parameter ∆ is set such that the induced
gap inside the nanowire at zero field is ∆ind = 0.250meV.

The superconductor has the same lattice constant and effective mass as the nanowire,
justified by the long-junction limit. This means that the wave function has most of its
weight in the nanowire and that the superconducting shell merely serves as an effective
boundary condition that ensures that all particles are Andreev-reflected. Further, the
superconductor lacks the Zeeman effect and spin-orbit interaction. Zeeman effect in
the superconductor is neglected because the g-factor in NbTiN is 2, much smaller than
the g-factor in InSb (which is 50). We use realistic parameters of an InSb nanowire [4]:
α= 20meV ·nm, m∗ = 0.015me , and g = 50.

The geometry of the modeled system is shown in Fig. 3.11.

3.9.7. DETAILED THEORETICAL ESTIMATES
In this section we estimate the strength of different possible mechanisms that can cause
supercurrent fluctuations in the nanowire Josephson junction.

Interference between orbital channels. The area of the cross section of the nanowire is
∼π× (50nm)2. This means that the magnetic field value of B ≈ 0.26T corresponds to one
flux quantum penetrating the cross section of the nanowire. At this value of the magnetic
field we expect the phase shifts between different bands propagating between the two
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Figure 3.11: The modeled tight-binding system. The purple sites indicate the semi-conductor and the yellow sites
show the superconductor. The red and light red colored cross sections indicate that the wire extends infinitely in
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figure for clarity we plot a shorter wire (L = 200nm), while in the simulations we chose L = 640nm. The other
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the superconductor is 16−24nm, and the coverage angle of the superconductor is 135◦.
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superconductors to be comparable toπ. This sets the typical B scale for the interference of
different orbital modes carrying current, which is well within the experimentally observed
typical difference in B of consecutive critical current minimums. This simple estimate
neglects the magnetic field expulsion of the superconductor, which may create a higher
flux in the nanowire near the superconducting contacts, thus lowering the effective field
scale.

These estimates are similar to the analysis for the Fraunhofer-like interference in
diffusive many-channel junctions [58]. The novelty is, however, in the small number
of channels in our junction, which causes irregular interference instead of the regular
Fraunhofer pattern in the former case. Another important observation in our case is that
even though the magnetic field is along the junction, it can still cause the interference
due to different transverse profiles of the propagating modes.

Interference between spin channels. Supercurrent fluctuations can be produced by 0−π
transitions due to the Zeeman splitting of the Andreev bound states inside the Josephson
junction. The characteristic B scale of such supercurrent fluctuations is determined by
the ratio of Zeeman energy to the Thouless energy. This sets the relative phase θB of the
Andreev bound states, θB = EZL/ħvF. Here EZ is the Zeeman energy, L the length of the
nanowire junction, and vF the Fermi velocity in the nanowire. The junction undergoes a
0−π transition when the relative phase difference of the ABS θB reaches the value π/2.
Such a transition is marked by a minimum in the junction critical current as a function
of B . Since vF ≈ √

2µ/m∗, the field value at which θB = π/2 depends on the chemical
potential µ. We thus estimate the upper bound of the magnetic field at which the first
0−π transition occurs by assuming a maximal value of µ∼ 15meV corresponding to the
intermode spacing [32, 34]. Assuming a junction length of L = 1µm, the upper bound of
the transition occurs at B ∼ 0.5T. Generally, for smaller µ, this value is significantly lower,
therefore purely Zeeman induced supercurrent fluctuations are well within the range of
our experiment. These estimates are confirmed in our numerical simulations, see α= 0
lines of Fig. 3.12.

Interference between spin, Zeeman and spin-orbit.

The previous discussion on spin related interference considered the Zeeman effect
only. However, the strong spin-orbit interaction in the nanowire fixes the spin direction
to the propagation direction and thus counteracts the effect of the Zeeman splitting.

Following Ref. [30], the characteristic parameter for spin-orbit is θSO = αkFL
ħvF

= αm∗L
ħ2 =

L/LSO. Here LSO is the spin-orbit length, which is expected to be in the 50− 250nm
range, much shorter than L. For the Zeeman effect to cause a 0−π transition it needs to
overcome the spin-orbit spin quantization. This means that the spin-orbit term increases
the field at which the first 0−π transition happens, and this increase is stronger as the
chemical potential is further away from the band bottom. This interplay between Zeeman
and spin-orbit interaction is expected to be highly anisotropic [30] in the direction of B ;
the scenario described above assumes the external B field and effective spin-orbit field to
be perpendicular, as is expected for applying B along the nanowire axis. To substantiate
our estimates we have used a nanowire toy model [2, 3] to obtain critical current as a
function of gate voltage, magnetic field, and spin-orbit coupling in Fig. 3.12. The model
indeed illustrates that the further the chemical potential is from the bottom of the band
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the higher is the value of the magnetic field at which the 0−π transition occurs.

In summary, the above estimates suggest that orbital interference is present regardless
of the exact value of µ, whereas spin related interference is highly restricted in µ range.
This favors an orbital interference interpretation of the experimental observations, since
the supercurrent variations in the experiment are always present in a similar field range
no matter the exact gate potential.

To illustrate this reasoning we produced Fig. 3.12, which shows supercurrent fluctua-
tions as a function of the distance to the bottom of the band in a single-band wire. With
increasing the distance to the bottom of the bands 0−π transitions happen at higher
fields. Upon ramping up spin-orbit strength the 0−π transitions disappear.

3.9.8. CURRENT PHASE RELATIONS AND JOSEPHSON ENERGIES

To further support the claims of the previous section and to discuss the role of the ground
state phase, we plot the evolution of the critical current and the ground state phase
difference with magnetic field, and show the current-phase relations and Josephson
energies characteristic for each junction state in Fig. 3.13. 0−π transitions happen in
the absence of spin-orbit interaction (Fig. 3.13(a)-(e)). In the presence of spin-orbit and
disorder, due to breaking of the spatial symmetry the ground state phase can obtain any
single value ϕ0 (a so-called ϕ0-junction) near the crossover between 0 and π states of the
junction ((Fig. 3.13(f)-(g)). Note that without disorder, the spatial mirror symmetry with
respect to the middle of the system forces all CPRs I (φ) to be odd functions and all E J (φ)
to be even functions of φ. When spatial mirror symmetry holds, the junction’s Josephson
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Figure 3.13: (a)-(g) The critical current and ground state phase difference as function of magnetic field, and
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Figure 3.14: Critical current as a function of the magnetic field and the gate voltage. The simulation parameters
are identical to the ones used in Fig. 3.5, but we set disorder to zero.

energy can still have a double minimum at ±ϕ (a so called ϕ-junction), thus E J (φ) taking
a Mexican hat type shape (green curves in (Fig. 3.13(b)-(c)). However, because of this
restriction imposed by spatial mirror symmetry, ϕ-junctions are rare and most junctions
are either 0 or π-junctions. Contrarily, including disorder breaks this symmetry leading to
commonly occurring ϕ0-junctions.

3.9.9. EFFECT OF DISORDER

Here we prove the essential effect of disorder on the supercurrent dependence on gate
voltage. We see the effect of disorder on Ic (Vgate) by comparing Fig. 3.5(b) and Fig. 3.14,
where we have switched off disorder. In the clean case, where the main effect of the
gate voltage on the supercurrent is via the gradual suppression of transmission through
the nanowire, we observe that varying the gate voltage barely causes fluctuations of the
supercurrent, even at finite magnetic field. In the disordered case, changing the gate
voltage effectively changes the realization of disorder in the region of the wire above the
gate, thus causing supercurrent fluctuations. With the increased disorder, the dwell time
in the gated region of the nanowire is increased, so the gate voltage dependence increases
with reduced mean free path. We found that no disorder and disorder with mean free
path greater than the system size cannot explain the observed dependence of the critical
current on magnetic field and gate voltage.

3.9.10. ROTATING MAGNETIC FIELD

Here we model the supercurrent fluctuations for different directions of the magnetic field,
from parallel to the wire to perpendicular to it. The results of the modeling are in Fig. 3.15.
We see that for all directions of the field, besides one parallel to the wire, the fluctuation
pattern is basically the same. This is in accordance with the experimental observations of
Fig. 3.8.
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4.1. INTRODUCTION

Spin-orbit interaction (SOI) is a relativistic effect that results from electrons moving (orbit)
in an electric field (E ) experiencing a magnetic field (BSO) in their moving reference frame
that couples to the electron’s magnetic moment (spin). SOI is an essential ingredient of
various realizations of topological superconductors, which host Majorana zero modes,
the building blocks of topological quantum computation [1–3]. The prime platform for
topological quantum computation is based on a semiconductor nanowire coupled to a
superconductor, where the proximity effect opens a superconducting energy gap in the
density of states of the nanowire [4, 5]. In general, a magnetic field suppresses supercon-
ductivity by closing the superconducting gap due to Zeeman and orbital effects [6]. If the
nanowire has strong SOI, suppression of the superconducting gap is counteracted and a
sufficiently large Zeeman energy drives the system into a topological superconducting
phase, with Majorana zero modes localized at the wire ends [4, 5]. The main experimental
effort in the last few years has focused on detecting these Majorana zero modes as a zero-
bias peak in the tunneling conductance [7–13]. However, SOI, the mechanism providing
the topological protection, has been challenging to detect directly in Majorana nanowires.

The electric field that gives rise to SOI in our system mainly results from structural
inversion asymmetry of the confinement potential (Rashba SOI), which depends on the
work function difference at the interface between the nanowire and the superconduc-
tor and on voltages applied to nearby electrostatic gates [14–17]. The Rashba SOI in
nanowires has been investigated extensively by measuring spin-orbit related quantum
effects: level repulsion of quantum dot levels [18, 19], and of Andreev states [9, 20], weak
anti-localization in long diffusive wires [21, 22], and a helical liquid signature in short
quasiballistic wire [23]. However, the SOI strength relevant to the topological protection
is affected by the presence of the superconductor, necessitating direct observation of SOI
in Majorana nanowires. Here, we reveal SOI in an InSb nanowire coupled to a NbTiN su-
perconductor through the dependence of the superconducting gap on the magnetic field,
both strength and orientation. We find that the geometry of the superconductor on the
nanowire strongly modifies the direction of the spin-orbit field, which is further tunable
by electrostatic gating, in line with the expected modifications of the electric field due
to work function difference and electrostatic screening at the nanowire-superconductor
interface.

4.2. DEVICE CHARACTERIZATION

Figure 4.1(a) shows the device image. An InSb nanowire (blue) is covered by a NbTi/NbTiN
superconducting contact (purple) and a Cr/Au normal metal contact (yellow). The barrier
gate underneath the uncovered wire (red) can deplete the nanowire, locally creating a
tunnel barrier. The tunneling differential conductance (d I /dV ) resolves the induced su-
perconducting gap, by sweeping the bias voltage (V ) across the tunnel barrier [Fig. 4.1(b)].
The dashed arrow indicates the induced gap of 0.65 meV. In this device, we have recently
shown ballistic transport and Majorana signatures [10].
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Figure 4.1: (a) False-color scanning electron micrograph of Majorana nanowire device A. An InSb nanowire
(blue) is contacted by a normal metal contact (N , yellow) and a NbTiN superconducting contact (S, purple). The
additional contact (gray) is kept floating. The nanowire is isolated from the barrier gate (red) and the super gate
(green) by ∼ 30 nm thick boron nitride. (b) Differential conductance d I /dV as a function of bias voltage V and
barrier gate voltage Vbarrier at B = 0 T. (c) Schematic of the nanowire device and definition of the axes. (d) Band
diagram of a Majorana nanowire at an externally applied magnetic field B perpendicular to the spin-orbit field
BSO. The arrows indicate the total magnetic field BT = B + BSO along which the spin eigenstates are directed. At
k = 0 the spin always aligns with B . At increasing k, BSO increases, tilting the spin more towards BSO. (e) d I /dV
as a function of V at B along x, y , z (left, middle, right) for super gate voltage VSG = 0 V. The white dashed lines
indicate a fit to the gap closing corresponding to α= 0.15 ± 0.05 eVÅ. (f) Horizontal line cuts of (e) at B indicated
by the colored arrows in (e).
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4.3. SPIN-ORBIT PROTECTION OF SUPERCONDUCTIVITY

The magnetic field (B) dependence of the induced gap of device A, with B along three dif-
ferent directions, is shown in Fig. 4.1(e). The coordinate system is illustrated in Fig. 4.1(c).
The x axis is along the nanowire, parallel to the electron momentum (k). The z axis is
perpendicular to the substrate and coincides with the electric field (E) direction due to
the spatial symmetry of the device and the bottom gate. Since the Rashba spin-orbit
field (BSO ∝ E × k) is perpendicular to both k and E , it points along the y axis. When
B is aligned with x or z [left and right panels in Fig. 4.1(e)], both perpendicular to BSO,
the gap closes slowly (at around 0.6 T), followed by the emergence of a zero-bias peak
possibly characteristic of a Majorana zero mode when B is along the nanowire, although
we emphasize that a conjecture of Majorana zero modes is not essential for the purposes
of this chapter. On the contrary, when B is aligned with the y axis (middle panel), parallel
to BSO, the gap closes much faster (at around 0.25 T). Figure 4.1(f) shows the line cuts at
|B | = 0.25 T along the three axes: for B ⊥ BSO, the gap is almost the same as when B = 0
T, while the gap is closed for B ∥ BSO. This observation matches the predictions of the
Majorana nanowire model, as illustrated in Fig. 4.1(d): when B ⊥ BSO, SOI counteracts
the Zeeman-induced gap closing by rotating the spin eigenstate towards BSO, which
reduces the component of the Zeeman field along the direction of the spin eigenstate.
In contrast, when B ∥ BSO, the spin eigenstate is always parallel to B , which prevents
spin-orbit protection and results in a fast gap closing [24, 25]. This pronounced anisotropy
of the gap closing with respect to different B directions is universally observed in over ten
devices (four shown in this chapter) for all gate settings (see Fig. 4.8), which is a direct
consequence of SOI in Majorana nanowires.

4.4. INTERPRETATION OF THE ANISOTROPY

Before we discuss the SOI in more detail, we rule out alternative mechanisms for the
anisotropy which can originate in the bulk superconductor, or the InSb nanowire. First, an
anisotropic magnetic field-induced closing of the bulk superconducting gap is excluded
for the fields we apply, which are far below the critical field of NbTiN (>9 T [26]. We
note that this is different from aluminum films [9, 11, 27, 28], where a small magnetic
field (<0.3 T) perpendicular to the film completely suppresses superconductivity, mak-
ing them unsuitable to reveal SOI from an anisotropic gap closing. Next, we consider
Meissner screening currents in NbTiN that can cause deviations in the magnetic field
in the nanowire. Our Ginzburg-Landau simulations show that the field corrections due
to Meissner screening are negligible (see Fig. 4.5), since the dimensions of the NbTiN
film (<1 µm) are comparable to the penetration depth (∼290 nm). The simulations also
show that vortex formation is most favorable along the z axis, which implies that the
observed anisotropic gap closing is not caused by gap suppression due to vortices near
the nanowire [29], since we do not observe the fastest gap closing along z [Fig. 4.1(f)]. Fi-
nally, in the InSb nanowire, the Zeeman g factor can become anisotropic due to quantum
confinement [19, 30, 31]. However, our nanowire geometry leads to confinement in both
the y and z directions, implying similar gap closing along y and z, inconsistent with our
observations [Fig. 4.1(e)].

Having excluded the above mechanisms, we are now left with three effects: spin
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splitting of the electron states in magnetic fields with the Landé g factor (Zeeman effect),
the orbital effect of the magnetic field representing the Lorentz force acting on traveling
electrons, and SOI. To investigate the role of these effects, we use a theoretical three-
dimensional Majorana nanowire model defined by the Hamiltonian [4–6]:

H =
(

p2

2m∗ −µ+V (y, z)

)
τz + α

ħσ · (Ê×p)τz + 1

2
gµB B·σ+∆0τx

Here, the first term represents the kinetic and potential energy, with µ the chemical
potential measured from the middle of the helical gap and V (y, z) = ∆VG

R [0, y, z] · Ê is
the electrostatic potential in the wire, whose magnitude is parametrized by ∆VG , with
Ê the direction of the electric field and R the wire radius. The orbital effect enters the
Hamiltonian via the vector potential A in the canonical momentum: p =−iħ∇+ eA. Here,
e is the electron charge, ħ is Plank’s constant, and m∗ = 0.015 me is the effective mass with
me the electron mass. The second term represents Rashba SOI characterized by a SOI
strength α, which we set to 0.2 eVÅ to find qualitative agreement with the measurements.
The third term is the Zeeman term, with an isotropic g factor set to 50 and µB is the
Bohr magneton. The last term accounts for the superconducting proximity effect, which
we implement in the weak coupling approximation [6]. The Pauli matrices τ and σ act
in the particle-hole and spin space respectively. We perform numerical simulations
of this Hamiltonian on a 3D lattice in a realistic nanowire geometry using the KWANT

code [32]. We note that a recent theory work shows that the anisotropy is unaffected
by additional factors such as the wire length, temperature, and strong coupling to the
superconductor [33]. Additional details are provided in the Appendix 4.7.

We identify which effects explain the observed anisotropic gap closing behavior by
including them separately in our simulations. Figure 4.2(a) shows the magnetic field
dependence of the gap without SOI (setting α = 0 in the Hamiltonian). In contrast to
Fig. 4.1(e) the gap closes around 0.3 T for all three directions, reflecting the dominant
contribution of the Zeeman effect. In Fig. 4.2(b), we turn on the SOI, and turn off the
orbital effect by setting the magnetic vector potential A= 0, which qualitatively reproduces
the anisotropic behavior between the y axis and the x and z-axes. We have explored other
combinations of parameters and find that the experimental results of Fig. 4.1(e) can only
be reproduced by including SOI. We note that adding the orbital effect in Fig. 4.2(c) shifts
the gap closing to a field almost twice as small for B ∥ y , which explains why we observe a
gap closing for B ∥ y at around 0.25 T, far below 0.45 T, the critical field expected when
only the Zeeman effect with g = 50 suppresses the gap. By fitting the curvature of the gap
closing [34, 35] along x [white dashed line in Fig. 4.1(e)] we estimate a range of the SOI
strength α of 0.15 – 0.35 eVÅ from devices A-D (for fitting details and fits to additional
devices, see Sec. 4.7.3). This SOI strength is in agreement with the values extracted from
level repulsion of Andreev states [20, 36] in an additional device E , see Sec. 4.7.3 for more
details. Since α depends on the electric field in the wire, we expect the observed variation
in the SOI strength of devices to be caused by differences in the applied gate voltages and
wire diameter. Recently, the level repulsion of Andreev states in InSb nanowires covered
with epitaxial aluminum has shown a SOI strength of approximately 0.1 eVÅ [20], slightly
lower than we find for NbTiN covered nanowires, most likely due to strong coupling to
the aluminum superconductor, leading to stronger renormalization of the InSb material
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parameters [15–17, 37–39].

4.5. ORIENTATION OF THE SPIN-ORBIT FIELD

To resolve the direction of the spin-orbit field, we fix the B amplitude and continuously ro-
tate the B direction, parametrized by the angleΘ in the z y plane [inset Fig. 4.3(a)]. Figure
4.3(a) shows the dependence of the gap onΘ, where we adjust the electric field strength
in the nanowire with a voltage VSG on the super gate (SG) underneath the superconductor
[green in Fig. 4.1(a)]. We define the angle at which the gap is hardest as Θmax and find
Θmax = 3 ± 2° (z axis) for all VSG and in multiple devices (Fig. 4.3 and Fig. 4.9) (error due
to uncertainty in the extraction procedure). This is illustrated in Fig. 4.3(c), which shows
horizontal line cuts for subgap bias. The largest gap for a given B amplitude is expected
for B ⊥ BSO, indicating that BSO ∥ y , in agreement with the E-field direction dictated by
the device geometry.
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Now, we check whether the orbital effect changesΘmax. The simulations in Fig. 4.3(b)
show the effect of magnetic field rotation on the gap with BSO ∥ y , confirming thatΘmax is,
indeed, always given by the direction perpendicular to BSO, i.e.Θmax = 0°. Comparing the
top panel (without the orbital effect) with the middle panel (with the orbital effect), we
conclude that the orbital effect does not affectΘmax. This conclusion also holds when we
vary the potential difference ∆VG between the middle and outer of the wire (correspond-
ing to VSG) in the middle panel and bottom panel. We note that, at ∆VG = 2 meV (bottom
panel) the wave function is moved towards the bottom of the nanowire, which increases
the strength of the orbital effect by breaking the reflection symmetry about the z axis, as
evidenced by the longer angle range over which the gap is closed compared to ∆VG = -4
meV (middle panel). Experimentally, we also observe this in Fig. 4.3(a), with line cuts in
Fig. 4.3(c), where the gap is closed over a significantly longer angle range with increasing
VSG. We note that we use small values of ∆VG in the simulations, because we expect a
weak gate response due to effective electrostatic screening by the superconductor, which
covers five of the six nanowire facets [40].

Finally, we turn to a second type of device in which the superconducting film only
partially covers the nanowire facets [Fig. 4.4(a)]. This partial superconductor coverage can
modify the orientation of BSO by changing the associated electric field direction [14], as
sketched in the inset of Fig. 4.4(a). The electric field in the wire has two main origins. The
first one originates from the work function difference between the superconductor and
nanowire, which leads to charge redistribution. The resulting electric field is expected
to rotate away from the z axis due to the partial superconductor coverage which breaks
the spatial symmetry. In Fig. 4.4(b), we rotate B in the z y plane, perpendicular to the
nanowire axis, and find that Θmax is, indeed, no longer at zero, but at 32 ± 2°. The
second contribution to the electric field arises from the applied VSG and the electrostatic
screening due to the grounded superconductor. Changing VSG should, therefore, rotate
the electric field for partial coverage. Indeed, we find thatΘmax shifts by 10° by adjusting
VSG by 7.5 V [Fig. 4.4(c)]. Field rotation at intermediate VSG and magnetic field sweeps
confirming the change of Θmax are shown in Fig. 4.10. Our theory simulations confirm
that Θmax is still given by the direction orthogonal to BSO when the electric field is not
necessarily along a spatial symmetry axis of the partially covered device [Fig. 4.4(d) and
4.4(e)]. While the orbital effect does not changeΘmax [Fig. 4.4(e) and 4.4(f)], it can induce
asymmetry in the energy spectrum aroundΘmax resulting from wave function asymmetry
when the electric field is not along the mirror plane of the device [Fig. 4.4(b) and 4.4(e)].
The significance of the orbital effect in our devices underlines the importance of including
it in realistic simulations of Majorana nanowires.

4.6. CONCLUSIONS

In conclusion, the observed gap closing anisotropy for different magnetic field orien-
tations demonstrates SOI in our Majorana nanowires, a necessary condition to create
Majorana zero modes. Our experiments reveal that SOI is strongly affected by the work
function difference at the nanowire-superconductor interface and the geometry of the
superconductor, while electrostatic gating provides tunability of SOI.
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4.7. APPENDIX

4.7.1. SUPPLEMENTAL EXPERIMENTAL DETAILS

NANOWIRE GROWTH AND DEVICE FABRICATION

The InSb nanowires used here were grown using a Au-catalyzed vapor-liquid-solid mech-
anism in a metal organic vapor phase epitaxy reactor, resulting in zinc blende nanowires
grown along the [111] crystal orientation, which are free of stacking faults and disloca-
tions [41]. Local gates, covered by a h-BN dielectric flake, were fabricated on a silicon
substrate. The nanowires were individually placed over the gates using a micromanip-
ulator [42]. The contacts are fabricated by exposing the chip to a mild oxygen plasma
cleaning after resist development, followed by immersion in a saturated ammonium
polysulphide solution diluted by water to a 1:200 ratio for 30 minutes at 60°C [43]. For the
normal contacts, the wires are exposed to 30 seconds of in-situ helium ion milling, before
evaporating 10 nm Cr and 110 nm Au. The NbTiN contacts are fabricated by exposing the
nanowire to 5 seconds or Ar plasma etching at 25 W, followed by sputtering of 5 nm NbTi
and 85 nm NbTiN [40, 44].

MEASUREMENT DETAILS

The measurements were performed in a dilution refrigerator at an electron temperature
of ∼ 50 mK using a three-axis vector magnet and standard lockin techniques.

4.7.2. SUPPLEMENTAL THEORETICAL DETAILS

DETAILS OF THE TIGHT BINDING SIMULATIONS

The Hamiltonian defined in the main text is discretized on a lattice of a realistic nanowire
geometry with a diameter of 70 nm and a length of 2 µm using a lattice spacing of 10
nm. The nanowire is covered by a 35 nm thick superconducting shell covering 3/8 of
the circumference of the wire, positioned on top of the wire [Fig. 4.2, 4.3(b)] or rotated
from the top to the side by 45° [Fig. 4.4(b)]. Transport calculations are performed by
connecting the nanowire to semi-infinite normal leads, separated by a tunnel barrier
on one side. The normal leads provide broadening of the peaks in the simulations [45,
46]. The superconducting proximity effect is implemented using the weak coupling
approximation [6], in which the pairing gap ∆0 = 0 in the nanowire, which is tunnel
coupled to a superconductor with ∆0 > 0 providing an induced gap of 0.45 meV at B =
0 T. The potential in the wire is given by V (y, z) = ∆VG

R (z cos(Φ)+ y sin(Φ)), where ∆VG is
the potential difference between the middle and outer points of the wire, R is the radius
of the nanowire, and Φ parametrizes the direction of the electric field Ê, which is set
to Φ = 0° in all simulations, except for Fig. 4.4(d), where Φ = 45°. The vector potential

A = [
By (z − z0)−Bz (y − y0),0,Bx (y − y0)

]T is chosen such that it does not depend on x
and the offsets x0, y0, z0 are chosen such that the vector potential averages to zero inside
the superconductor, implying a total supercurrent of zero in the superconductor. This
choice is supported by the negligible screening currents we observe in our Ginzburg-
Landau simulations [Fig. 4.5]. A is implemented in the tight-binding model using Peierls
substitution in the hopping amplitudes [47].
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DETAILS OF THE GINZBURG-LANDAU SIMULATIONS

To calculate the stray fields in the nanowire due to Meissner screening and vortex entry in
the superconducting contact (results shown in Fig. 4.5), we have performed simulations
on the Ginzburg-Landau model [48] in a realistic three-dimensional geometry using the
dimensions of device A. We used a penetration depth λ = 290 nm and a Ginzburg-Landau
parameter κ=λ/ξ = 50, in line with the values expected for our NbTiN film, which has a
room temperature resistivity of 95 µΩcm and a critical temperature of 15 K. The Ginzburg-
Landau functional is discretized both inside the superconducting contact as well as in
its surrounding space [49] using a second-order finite difference scheme at a maximum
internode distance of 0.01λ. The resulting energy functional is minimized using the
nonlinear conjugate gradient method and the code is implemented on a NVidia CUDA
architecture with high parallelization. We obtain the energy of states with vortices at finite
magnetic fields by first introducing artificial perturbations near the sample boundary,
followed by energy minimization to find the local minimum corresponding to a specific
number of vortices. The optimal number of vortices at a certain magnetic field is then
determined by finding the state with the lowest energy globally. We note that non-optimal
amounts of vortices can be metastable due to significant Bean-Livingston barriers for
vortex entry, so the actual number of vortices is hysteretic and depends on the dynamics
of the magnetic field.

4.7.3. EXTRACTION OF SOI STRENGTH

DETERMINATION OF SOI STRENGTH α FROM GAP CLOSING

In a Majorana nanowire the SOI strength α determines the shape of the gap closing along
B-directions perpendicular to the spin-orbit field BSO [34, 35] [see Fig. 4.6(a)]. To find
an analytical expression for the dependence of the gap closing on α, we start from the
conventional one-dimensional Majorana nanowire Hamiltonian [4, 5], in which the gap
size is given by the lowest energy eigenstate:

∆(B) = min
(
ε2 +ε2

SO +ε2
Z +∆(0)2 ±2

√
ε2(ε2

SO +ε2
Z )+ε2

Z∆(0)2
) 1

2
(4.1)

Here, ε = ħ2k2/2m∗−µ represents the kinetic energy, with k the electron wave vector
and m∗ = 0.015me the effective mass. εSO =αk is the SOI term with α the SOI strength.
εZ = 1

2 gµB B is the Zeeman energy, with g the Landé g -factor and µB the Bohr magneton.
∆(0) is the induced superconducting gap at B = 0 T, which we measure in the experiments
(as indicated in Fig. 4.1(b)).

For B ∥ BSO (y-axis) and neglecting the orbital effect the gap closes linearly with the
Zeeman energy due to tilting of the bands [24, 25]:

∆(B) =∆(0)− 1

2
gµB B (4.2)

The orbital effect significantly enhances the gap closing in our devices [cf. Fig. 4.1, 4.2],
with a strong dependence on the potential difference∆VG in the three-dimensional model.
Although the value of∆VG in our devices is unknown, we find that the orbital effect can be
effectively taken into account in the one-dimensional model by adjusting the g -factor to
match the gap closing along BSO, where SOI disappears and only the Zeeman and orbital
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blue) of ∆B relative to the external field B as a function of the position x along the nanowire axis, where x = 0
corresponds to the middle of the superconducting contact. The lines show the mean stray field and the shaded
regions are bounded by the minimum and maximum stray field found along the nanowire width at a particular
x. The end of the superconducting film is indicated by the dashed line. B is along x, y and z (left, middle and
right panel). Since the device dimensions are comparable to the penetration depth λ= 290 nm, the magnetic
screening in the superconductor is incomplete, leading to small screening currents and stray fields of at most 4%
of B . These modifications are much smaller and do not match the anisotropy we observe in the measurements,
which excludes Meissner screening as the origin of the observed anisotropic gap closing. We note that we have
also evaluated ∆B at several different magnitudes of B as well as in the presence of vortices and find relative
stray fields of very comparable magnitude. (c) Energetically most favorable number of vortices as a function of
B along x, y and z (black, yellow, blue). Vortices form far more easily for B ∥ z. An anisotropic gap closing due to
vortices near the nanowire would therefore cause the fastest gap closing along z, contrary to the anisotropic gap
closing we observe, where the gap closes fastest for B ∥ y [see e.g. Fig. 4.1(e)]. Furthermore, for B ∥ y vortices
only start to appear at B > 0.2 T, while the gap is already strongly suppressed at 0.2 T [see e.g. Fig. 4.1(e)], which
excludes vortex formation as the origin of the gap closing for B ∥ y and indicates that vortices do not have a
strong effect on the size of the induced gap.
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effect contribute to the gap closing. We emphasize that the g -factor extracted from the
fits therefore does not correspond to the pure Zeeman g -factor used in our tight-binding
calculations. The validity of this approximation is demonstrated in Fig. 4.6(b), where
the color map shows the gap closing resulting from our numerical calculations on the
three-dimensional tight-binding model (taking the orbital effect into account and using
g = 50) and the dashed white lines show the gap given by Eq. (4.1) for B ∥ x and by Eq. (4.2)
for B ∥ y using g = 65.

To extract α from our measurements, we fit the model given by Eq. (4.1) and (4.2) to
the measured gap closing both along the wire and along BSO simultaneously. We prevent
overfitting by independently constraining the free parameters. First, g is determined by
the gap closing along BSO, which only depends on the Zeeman effect. Then,µ follows from
the critical field BC along x, where 1

2 gµB BC =
√
∆(0)2 +µ2 [4, 5] (note that BC does not

depend on α). The SOI strength α is now the only free parameter left to fit the curvature
of the gap closing along x. This procedure is applied to four devices [see Fig. 4.1(f),
Fig. 4.8(b),(c), and Fig. 4.11], resulting in a SOI strength of 0.15 – 0.35 eVÅ, corresponding
to a spin-orbit energy ESO = m∗α2/2ħ2 of 20 – 120 µeV. The remaining parameters used
for the fit of device A shown in Fig. 4.1(e) are g = 90, µ = 1.4 meV. The values of g and µ
found for the remaining devices are given in Fig. 4.8. Table I shows the range of values
of the fitting parameters for which good fits can be obtained. Since α depends on the
electric field in the wire, we expect the observed variation in the SOI strength of devices
to be caused by differences in the applied gate voltages and wire diameter.

Table 4.1: Results of gap closing fitting procedure

Device A Device B Device C Device D
g 90 ± 10 60 ± 20 85 ± 5 160 ± 20
µ (meV) 1.5 ± 0.4 1.8 ± 0.8 2.75 ± 0.25 2.8 ± 0.6
α (eVÅ) 0.15 ± 0.05 0.3 ± 0.1 0.35 ± 0.05 0.35 ± 0.05

ESTIMATION OF SOI STRENGTH BASED ON LEVEL REPULSION

SOI induces coupling between states of different momentum and spin in finite length
Majorana nanowires, which leads to level repulsion when energy levels are nearly de-
generate [36]. Recently this level repulsion between longitudinal states within the same
subband was used to estimate a SOI strength in epitaxial Al-InSb nanowires [20]. Here, we
follow the same procedure to estimate the SOI strength in a separate device with a NbTiN
superconductor that exhibits such level repulsion. We consider a low energy model of two
levels dispersing in the magnetic field due to the Zeeman effect, coupled to each other by
SOI with the matrix element δSO:

H =
[

E0 + 1
2 g0µB B δSO

δSO E1 − 1
2 g1µB B

]
(4.3)

We fit the eigenenergies of H to our experimental data [Fig. 4.7a] to extract δSO. The
precise value of the coupling parameter δSO depends not only onα, but also on the details
of the confinement and on the coupling strength to the superconductor [20]. A rough
estimate, with reasonable agreement to numerical simulations, was proposed to be: 2δSO
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Figure 4.6: Extracting SOI strength from gap closing curvature. (a) Lowest energy state Emin determining the
gap in the one-dimensional model given by Eq. (4.1) as a function of magnetic field, B , in units of the critical

field Bc =
√
∆2 +µ2 for various spin-orbit strengths α. The curvature of the gap closing is strongly affected by α.

Stronger SOI counteracts the Zeeman effect up to larger B/Bc , leading initially to a slow gap closing, followed
by a sharp gap closing when approaching the critical field, where the lowest energy state is at k ≈ 0 for which
BSO(k) vanishes. The remaining parameters are: ∆(0) = 1 meV, µ = 2 meV. (b) Comparison of the numerical
simulations on the 3D tight binding model, including the orbital effect (color map), with the 1D model given
by Eqs. (4.1) and (4.2) which does not account for the orbital effect (dashed lines). By adjusting the g -factor
used in the Majorana nanowire model from g = 50 to 65 to match the gap closing for B ∥ BSO, keeping all other
parameters the same in both models, we find good agreement for the gap closing for B ∥ x. We use this same
approach to take the orbital effect into account in an effective manner in fits of the experimentally observed gap
closing. The remaining parameters used in the simulations shown here are ∆(0) = 0.45 meV, µ = 0.95 meV, α =
0.2 eVÅ, ∆VG = -10 meV.



4.7. APPENDIX

4

87

0.4-0.4 0
0

1

B 
(T

)

V (mV)

-3.6-4 -3.8

VSG (V)

-3.4

α (eVÅ)

2δ
SO

 (m
eV

)
0.1

0.15

0.4

0.55

2δSO

(a) (b)
dI/dV (2e2/h)

0.350

Figure 4.7: Extracting the SOI strength from level repulsion. (a) d I /dV as a function of V and B at VSG = -3.3
V, measured in device E. Two Andreev states come down from the gap edge and exhibit an avoided crossing
around B = 0.5 T. The dashed lines indicate fits to the solution of Eq. (4.3). The extracted coupling δSO between
the Andreev levels is indicated by the arrow. (b) 2δSO as a function of VSG. The right axis shows the estimation
of the SOI strength using α= 2δSOL/π for the 1.2 µm long superconducting region. The error bars show the
standard deviation in δSO obtained from the fits.

= απ/L, where L is the length of the wire. The extracted δSO is shown in Fig. 4.7(b) for
various values of the super gate voltage VSG. As VSG becomes more negative, we see
an increase in δSO, consistent with an increasing electric field in the nanowire. We can
estimate α∼ 0.4 – 0.55 eVÅ. Considering the uncertainty in the relation between α and
δSO and variation in the electrostatic environment of different devices, this magnitude is
in line with our estimation based on the gap closing curvature.
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Figure 4.8: Anisotropic gap closing in additional devices. (a) False colored scanning electron micrographs
of additional devices B (used in Fig. 4.3) and C, showing anisotropy similar to the device in Fig. 4.1(e). (b,c)
Differential conductance, d I /dV , as a function of the magnetic field, B , along the x, y , and z-axes (from left to
right). The gap closes at much lower fields along the y-axis than the x and z-axes in all devices fully covered with
the superconductor. The white dashed lines indicate fits to the gap closing from which we extract a spin-orbit
strength α of 0.3 ± 0.1 eVÅ [for (b)] and 0.35 ± 0.05 eVÅ [for (c)], with g = 60, 85 and µ = 1.8, 2.7 meV as the
remaining fit parameters for (b), (c) respectively. We note that we do not observe clear reopening of the gap in all
devices, which theoretical studies have attributed to the negligible contribution to the tunneling conductance
of the states associated with the gap reopening due to their spatial wave function extension into the middle of
the wire leading to minimal weight near the tunnel barrier [33, 50–52]. The super gate was set to VSG = -1.5 V,
-2.6 V in (b), (c) respectively.
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Figure 4.9: Gap dependence on magnetic field orientation in zy-plane in device A. (a) Differential conductance,
d I /dV , as a function of bias voltage, V , upon rotation of the magnetic field at 0.25 T over anglesΘ between z
and y with different voltages on the super gate VSG in the three panels. This is the same device as presented in
Fig. 4.1(b) Horizontal line cuts of (a) averaged over a bias range |V | < 0.2 mV, showing that the hardest gap is
at Θ= 0, and increased VSG suppresses the gap when B is along y , the same behaviors observed in device B
[Fig. 4.3].
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at various values of VSG as indicated in the insets. The data is measured at slightly different field magnitudes
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d I /dV that are visible for some of the scans are likely caused by charge fluctuations in the dielectric environment.
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5.1. INTRODUCTION
The theory of normal conductor-superconductor (NS) hybrid systems distinguishes two
limiting cases: long and short junctions. In long junctions, the dwell time τdw of a
quasiparticle inside the normal region is much larger than the time ħ/∆ it spends inside
the superconductor (with ∆ the superconducting gap). In this limit the induced gap
inside the semiconductor is equal to ħ/τdw, and therefore it varies for different bound
states. In the short-junction or strong-coupling limit, the quasiparticles spend most of
their time inside the superconductor, while the normal region effectively acts as a delta
function scatterer. Then in the presence of time-reversal symmetry, the induced gap
is close to ∆ for every single Andreev bound state. In the short-junction limit Andreev
bound states have the most weight in the superconductor, and therefore the conventional
approach of integrating out the superconductor and obtaining an effective Hamiltonian
of the normal system becomes inefficient due to the strong energy dependence of the
effective Hamiltonian.

Systematically studying the short-junction limit is relevant for the creation of Majo-
rana bound states (MBS) [1–5] in semiconductor nanowires [6, 7] partially coated with
epitaxially grown aluminum that have high interface quality. These systems were ob-
served to have a well-developed hard induced gap comparable to the gap in the bare
Al [8], and subsequently showed zero bias peaks [9] and suppressed splitting of low energy
states characteristic to MBS [10]. The theoretical description of the response of strongly
coupled zero-dimensional NS junctions to magnetic field was analyzed in Ref. [11], where
the authors report a strong suppression of the effective g factor, potentially leading to
the impossibility of inducing a topological phase at magnetic fields below the Clogston
limit [12].

Here we extend the analysis of Ref. [11] using the scattering formalism that allows us
to capture the nonlinear features of the spectrum, and by considering higher-dimensional
systems with translational invariance. The scattering formalism has been routinely ap-
plied to short junctions in mesoscopic physics [for review see [13]]. Relevant works
to the present study are on two-dimensional electronic gases with spin-orbit interac-
tions [14, 15]. However, in Majorana literature the use of the scattering formalism has
been limited [16]. The equivalent of the scattering formalism using the effective Hamilto-
nian approach amounts to introducing an effective self-energy Σ(E) which has a proper
dependence on energy E [17–19] and then neglecting the energy term in the nonlinear
eigenvalue problem [H −Σ(E)]ψ= Eψ, as done in, e. g., Ref. [20].

Our overall findings are favorable for the creation of MBS in Al-based NS systems.
Specifically, we find that:

• The critical magnetic field B∗ required to induce a topological phase is independent
of the superconducting gap. This is valid also beyond the short-junction limit, as
long as penetration of magnetic field into the superconductor is negligible.

• Since B∗ is inversely proportional to the wire cross section, the device design can
be used to adjust B∗ within a broad range.

• The localization length ξM of the MBS does not depend on the superconducting
gap, and in optimal conditions it is proportional to the spin-orbit length lSO.
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• Finally, if the interface between the semiconductor and the superconductor has
high transparency T , then B∗ becomes only a slowly varying function of the chemi-
cal potential µ, as opposed to its usual oscillatory behavior on the scale of the mode
spacing in the nanowire [21, 22].

Our analytical calculations fully coincide with the results obtained using a numerical
scattering approach to short junctions and exact diagonalization of a discretized tight-
binding Hamiltonian. While these conclusions are favorable for the prospect of using
weak superconductors for MBS creation, we note that the effects of disorder in the su-
perconductor are not systematically treated here. Disorder has been recently predicted
to have a strong detrimental effect on the creation of MBS in systems that are in the
short-junction limit [23].

This chapter is organized as follows. Section 5.2 contains a pedagogical review of scat-
tering formalism for the calculation of Andreev spectrum. The following Sec. 5.3 presents
scaling arguments supporting our conclusions. In Sec. 5.4 we compute the dispersion
relation of a planar NS junction and discuss the typical device parameters. Section 5.5
investigates the Majorana phase diagram and the behavior of the MBS decay length. In
Sec. 5.6 we compare the predictions of Sec. 5.5 with numerical diagonalization of finite
junctions. Section 5.7 estimates the orbital effect of the magnetic field by computing the
Andreev spectrum in a cylindrical geometry in a thin shell limit. In Sec. 5.8 we confirm our
findings using a numerically computed Majorana phase diagram of a three-dimensional
model. Lastly, section 5.9 sums up our conclusions.

5.2. SCATTERING MATRIX FORMALISM AND THE SHORT-JUNCTION

LIMIT
This section reviews the scattering approach to calculating the Andreev bound state
spectrum and may be skipped by expert readers. We start by considering a general NS
junction with n superconducting terminals [24]. We use the case n = 1 in Secs. 5.4, 5.5, 5.8
and n = 2 in Sec. 5.7.

The levels with |E | < ∆ are Andreev bound states, i.e., coherent superpositions of
electron and hole excitations which occur due to Andreev reflections [25] at the interface
between the normal region and the superconducting terminals. The wave function
quantization condition on the wave function requires that the total sequence of scattering
events results in a phase shift of 2πn. For the vector of modes ψ incoming from the
superconductor to the normal region this condition reads:

S ASNψ=ψ. (5.1)

Here SN is the scattering matrix of the normal region, and S A the scattering matrix of
Andreev reflection processes in the superconducting terminals. The mode vector has
electron and hole components ψ= (ψe ,ψh).

The Andreev reflection matrix assumes a universal form when the superconductor has
s-wave pairing without any sources of time-reversal symmetry breaking and additionally
when the Andreev approximation holds (when the Fermi energy in the superconductor
is much larger than ∆). In the literature, the Andreev spectrum is often calculated in
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systems where the superconductor Hamiltonian has full spin-rotation invariance (an
appropriate approximation for aluminum), making the spin basis a natural choice of
basis of ψ. Yet the universal structure of the Andreev reflection matrix does not change
in the presence of spin-orbit coupling in the superconductor. However, in that case
it is impossible to choose a spin basis due to lack of spin conservation and it is more
appropriate to use a basis where the outgoing modes are time reversed of the incoming
modes [26]. Throughout this chapter we work in the latter basis but explain the relation to
the more commonly used spin basis for reference at the end of this section. Importantly,
we neglect the time-reversal symmetry breaking perturbations in the superconductor,
restricting ourselves to magnetic fields much lower than critical.

The scattering matrix of the normal region is block diagonal in the Nambu space:

SN (E ,k) =
(
Se (E ,k) 0

0 Sh(E ,k)

)
, (5.2)

where Se and Sh are the scattering matrices of electrons and holes. We consider NS
junctions with a translational symmetry, and therefore the scattering matrices may de-
pend on the wave vector k along the translationally invariant directions. We choose
the hole modes ψh as particle-hole partners of the electron modes ψe . In this basis the
particle-hole symmetry of the scattering matrix reads:

τx S∗
N (E ,k)τx = SN (−E ,−k), (5.3)

Using the block-diagonal structure of SN it follows that the normal scattering matrix
of holes is the conjugate of the scattering matrix for electrons, at opposite energy and
momentum [27]:

Sh(E ,k) = S∗
e (−E ,−k). (5.4)

In the same basis, the Andreev reflection matrix reads:

S A =α(E)R, R =
(

0 r
−r∗ 0

)
, r =⊕ j e iφ j , (5.5)

where the index j runs over the terminals, φ j is the superconducting phase in lead j , and
α(E) = exp(−i arccos(E/∆)) [28].

Following Ref. [28], eliminating ψ from Eq. (5.1), and using an expression for a block
matrix determinant one immediately arrives to a determinantal equation for the bound
state energies:

det[1+α2(E)r∗Se (E ,k)r S∗
e (−E ,−k)] = 0. (5.6)

The short-junction limit allows us to further simplify the calculation of the Andreev
bound state energies when Thouless energy ETh ≡ ħ/τdw À ∆. Thouless energy is the
typical energy scale for the matrix elements to change appreciably, therefore in the short-
junction limit SN (E ,k) ≈ SN (0,k) for any E .∆. After replacing Se (E) with Se (0), the only
energy-dependent term remaining in Eq. (5.1) is the coefficient α(E ). Since the scattering
matrices are invertible, Eq. (5.1) reads:

RSNψ=α−1(E)ψ, or S−1
N R−1ψ=α(E)ψ. (5.7)
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Adding the two equations yields the following energy eigenproblem:

1

2
[RSN +S−1

N R−1]ψ= E

∆
ψ. (5.8)

Further squaring this equation and using the unitarity of the scattering matrices S A and
SN we arrive to the eigenproblem expression for the Andreev spectrum:{

1

2
− 1

4

[
S†

e (k)r ST
e (−k)r∗+H.c.

]}
ψe = E 2

∆2ψe , (5.9)

where the energy argument is suppressed, since Se is evaluated at E = 0. If there is only
a single superconducting terminal, the Andreev reflection matrix r reduces to a phase
factor, which fully drops out from Eq. (5.9), as required by gauge invariance.

If the spin is conserved, the above derivation is nearly identical in the spin basis. The
scattering matrices in the spin basis S̃e and r̃ are related to the basis of time-reversed
modes by a transformation

S̃e =−iσy Se , r̃ =−iσy ⊕ j e iφ j , (5.10)

with the Pauli matrices σ spin operators and σ0 an identity matrix. The symmetry condi-
tion (5.4), equation (5.6) for the Andreev spectrum, and eigenproblem for the spectrum
in short-junction approximation (5.9) are identical in both bases upon replacing Se and r
with S̃e and r̃ .

5.3. SCALING ARGUMENTS FOR THE MBS PROPERTIES IN THE

SHORT-JUNCTION LIMIT
The superconducting gap enters only as an overall prefactor of the Andreev state energies
in Eq. (5.9), while the specific spectrum depends only on the normal state scattering
matrix Se . This simplification allows us to draw most of our conclusions about MBS
properties solely using universal arguments and not by solving a specific model. For
instance, since the Majorana phase transition occurs when Eq. (5.9) has a zero-energy
solution, the critical field B∗ does not depend on ∆. This conclusion also extends beyond
the short-junction limit, since the zero energy solutions of Eq. (5.9) always coincide with
the zero energy solutions of the Eq. (5.1) and therefore with the full solutions of the
Bogoliubov-de-Gennes equation.

Turning to the spatial extent of MBS in the normal region ξM , we observe that it is
limited from below by the coherence length ξS in the superconductor. However ξS is
often short: For example in aluminum films ξS ∼ 100nm due to disorder effects. If ξM is
predominantly set by the properties of induced superconductivity in the normal region,
ξM must also be independent of ∆, since it is a property of the eigenvectors of Eq. (5.9) at
E = 0.

If the semiconductor has a cross section W , effective electron mass mn , and it is
coupled to the superconductor by an interface with transparency T , then the Thouless
energy equals

ETh = T Nδ, δ≡ ħ2π2

2mn(2W )2 , (5.11)
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where N is the number of transverse bands occupied in the semiconductor, and δ is the
typical interband spacing. The denominator of the expression for δ contains 2W since
it is the total distance traveled by a quasiparticle normal to the interface between two
consecutive Andreev reflections. We focus on the experimentally relevant low-density
regime when N ∼ 1. In realistic nanowires mn ∼ 10−2me , and W ≈ 100nm, resulting in
δ≈ 1meV, much larger than the superconducting gap in aluminum ∆Al ≈ 0.2meV, which
justifies the short-junction approximation for sufficiently transparent contacts T & 0.1.

In order for the spectral gap to close in the normal region—or, in other words, for a
topological phase transition to appear—the scattering matrix Se must change by O (1)
since, in the presence of time-reversal symmetry, all the Andreev bound states have the
same energy E =∆. For the Zeeman field to cause such a perturbation, the electron spin
must precess by a large angle during the propagation inside the scattering region. This
results in a condition EZτdw/ħ∼ 1, or equivalently

B∗ ∼ ETh/gµB , (5.12)

with g the effective gyromagnetic factor and µB the Bohr magneton.
The orbital effect of the magnetic field causes an additional time-reversal symmetry

breaking perturbation to the normal scattering region. It becomes significant [causes an
O (1) change of Se ] when the flux penetrating the scattering region becomes comparable
to the flux quantum Φ0 = h/e. This defines another scale of the magnetic field, charac-
terizing the importance of its orbital effect Borb ∼ h/eW 2. Comparing Borb with B∗ we
get

Borb

B∗
∼ gµB mn

eħT N
. (5.13)

If transparency is high and the number of modes is low, then the relative strength of the
orbital and Zeeman effects of the magnetic field is a material parameter dependent on
the g factor and the effective mass. For realistic materials this factor is O (1), which is in
line with our results in Secs. 5.7 and 5.8.

Turning to the spatial extent of the MBS ξM , we observe that it must diverge in the
topological regime in the absence of spin-orbit coupling. The spectral gap at a finite
momentum appears already in the first order perturbation in spin-orbit strength α, and
hence ξM ∼α−1. Finally, in the optimally tuned situation N ∼ 1, and B ∼ B∗, so that SN

only depends on two energy scales: δ and the spin-orbit energy ESO = mnα
2/2ħ2. This

means that there is only a single length scale inversely proportional to α, the spin-orbit
length lSO =ħ/mnα, and hence ξM ∼ lSO.

The scattering approach highlights another important property of the Majorana phase
diagram, the relation between T and the oscillatory behavior of B∗. If T ∼ 1, there is little
scattering at the NS interface, and τdw becomes a smooth function of the chemical
potential µ. Combining this with Eq. (5.12) we conclude that B∗ must also depend on µ in
a smooth fashion. In the opposite limit T ¿ 1, ETh reduces on resonance, whenµmatches
the bottom of a subband in the semiconducting region. Away from the resonance, when
there are no available states at the selected energy, ETh becomes very large. This behavior
of Thouless energy results in the appearance of a sharp minimum in B∗ whenever µ
matches the bottom of a new band in the semiconductor region. In Sec. 5.4 we confirm
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the relation between the interface transparency and the oscillatory nature of the Majorana
phase boundary.

These findings are different from the predictions of a purely 1D phenomenological
model [6, 7] with the Hamiltonian

H1D =
(

p2

2mn
−µ+ α

ħσy p

)
τz +∆′τx +EZσz , (5.14)

where the induced superconductivity enters as a phenomenological pairing term ∆′, and
the momentum p is limited to a direction along the nanowire. The induced gap follows
from a perturbation theory in the weak coupling limit between the semiconductor and
the superconductor. Therefore the phenomenological model is not directly applicable
to the strong coupling regime for highly transparent junctions. The Hamiltonian H1D

undergoes a topological phase transition when E 2
Z =∆′2 +µ2, and therefore B∗ explicitly

depends on ∆′. This difference, however, is due to the shortcomings of the effective
model, and in reality our conclusions also hold in the weak-coupling/long junction
limit. In the long junction limit ∆′ ≈ ETh, immediately leading us to the conclusion that
B∗ and ξM are independent of the intrinsic superconducting gap ∆. If a long junction
is transparent T ∼ 1, then the Fermi momentum drops out of the level quantization
condition, hence resulting in the lack of oscillations of B∗ as a function of µ. Finally,
the rest of our conclusions follow in a similar fashion for the long junctions from the
dimensional analysis of Eq. (5.14) after the identification ∆′ ∼ ETh.

5.4. MODEL

5.4.1. GENERAL SOLUTION
To verify our general arguments, we consider a specific model, a semiconductor nanowire
in contact with a large superconductor. We consider the effective superconductor thick-
ness to be infinite, unlike the typical experimental situation where the superconductor
thickness is around 10 nm. This limit is nevertheless a reasonable approximation due
to the large Fermi surface size mismatch between the superconductor and the semicon-
ductor. A much larger Fermi surface in the superconductor means that most electron
trajectories approaching the nanowire from the superconductor side must be reflected
back. Full internal reflection in combination with diffuse scattering allows the supercon-
ductor to accommodate quasiparticle trajectories much longer than the superconducting
coherence length ξS =ħvs,F /∆, making the superconductor effectively infinite.

We first consider the device geometry shown in Fig. 5.1. The nanowire is oriented
along the x axis, NS interface is at y = 0, and the outer boundary of the wire is at y =W .
The superconductor occupies the half-space y < 0. Neglecting the orbital effect of the
magnetic field makes the motion in z direction separable and reduces the problem to a
purely two-dimensional geometry, shown in Fig. 5.1(b).

The normal state Hamiltonian of the system is that of a Rashba two-dimensional
electron gas coupled to a material with negligible spin-orbit interaction and Zeeman
coupling [29]:

H =
[

p
1

2m(y)
p −µ(y)

]
σ0 + 1

2ħ {α(y),σ×p} · ẑ +EZ (y)σx . (5.15)
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Figure 5.1: (a) Nanowire with width W oriented along the x direction and coupled to a bulk superconductor. The
magnetic field is parallel to the wire, while the Rashba electric field points along the z direction. (b) Semiclassical
bound state trajectory in the two-dimensional nanowire. Electrons (solid blue) and holes (dashed red) specularly
reflect at the boundary with vacuum and undergo Andreev reflection at the interface with the superconductor.
Two types of bound states are shown: at finite longitudinal momentum kx (left) and vanishing momentum
kx = 0 (right). The induced gap may only close at kx = 0.
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Hereσ are the spin Pauli matrices, and p the momentum operator. The chemical potential
µ and effective mass m are

µ(y) =
{
µn , y ∈ (0,W )

µs , y < 0
, m(y) =

{
mn , y ∈ (0,W )

ms , y < 0
. (5.16)

Additionally, we neglect the spin-orbit coupling and the magnetic field effect in the
superconductor, therefore restricting the model to B ¿ Bc , with Bc the critical field of the
superconductor:

α(y) =αΘ(y)Θ(W − y), EZ = gµB B

2
Θ(y)Θ(W − y), (5.17)

withΘ the Heaviside step function and α, the Rashba spin-orbit coupling strength. The
spin-orbit term in Eq. (5.15) is symmetrized using anticommutators to ensure current
probability conservation at the interface. The Zeeman energy EZ is due to a magnetic field
of magnitude B oriented along the wire direction. The effective electric field generating
the Rashba spin-orbit coupling is E R = 2mnα/ħgµB ẑ. To compare the short-junction
approximation with exact diagonalization results, we use the Bogoliubov-de Gennes
(BdG) Hamiltonian:

HBdG =
(

H(B) ∆(y)
∆(y) −H(−B)

)
, (5.18)

with ∆(y) = ∆Θ(−y). The choice of a step-function pairing potential is justified due to
a density of states mismatch between the superconductor and semiconductor by more
than 106, which renders the self-consistency condition on ∆ unimportant.

To make further analytical progress, we neglect the spin-orbit coupling in the y direc-
tionασx py . This is a valid simplification since in semiconductor nanowires the spin-orbit
length lSO is usually larger than the nanowire width W . We later verify the validity of this
approximation by computing the exact expression for the topological phase boundary
and by including the transverse spin-orbit coupling in all the tight-binding simulations.

The wave functionψn(kx , y) in the nanowire satisfies the boundary conditionψn(kx ,W ) =
0 and has the general form

ψn = u+c+ sin[k+(W − y)]+u−c− sin[k−(W − y)], (5.19)

with

u+ = 1p
2

(
1

e iϕ

)
, u− = 1p

2

(
e−iϕ

−1

)
, (5.20)

e iϕ = EZ − iαkx√
E 2

Z +α2k2
x

,

and c± unknown amplitudes. The wave function in the superconducting lead has the
form

ψs =
(

ain,↑e i q y +aout,↑e−i q y

ain,↓e i q y −aout,↓e−i q y

)
, (5.21)
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with ain the amplitudes of the incoming modes, aout the amplitudes of the outgoing
modes, and the relative signs chosen to ensure that the incoming and outgoing modes are
time-reversed of each other. Finally, the momenta q and k± normal to the NS interface
are fixed by the dispersion relation at energy E :

q =
[

2ms

ħ2 (E +µs )−k2
x

]1/2

,

k± =
[

2mn

ħ2 (E +µn ∓
√

E 2
Z +α2k2

x )−k2
x

]1/2

. (5.22)

We use the wave function continuity at y = 0 as well as the current conservation
condition on the wave function derivative normal to the interface, in the y direction:

m−1
n ψ′

n(kx ,0) = m−1
s ψ′

s (kx ,0). (5.23)

Solving for c± and aout for given ain we obtain the scattering matrix:

Se = 1

2

(
(r+− r−)e iϕ r++ r−
−r+− r− (r−− r+)e−iϕ

)
, (5.24)

with the reflection phases of different spin projections given by

r± = vs − i v± cot(k±W )

vs + i v± cot(k±W )
. (5.25)

Here we introduced the transverse velocities vs =ħq/ms in the superconductor lead and
v± =ħk±/mn in the nanowire.

The scattering matrix holds generally at energies below the superconducting gap
|E/∆| < 1. In the short-junction approximation, Se is evaluated at Fermi energy E = 0.
Then the Andreev bound spectrum follows immediately upon solving the eigenvalue
problem (5.9):

E =±∆
√

1− 1

4
|r+(kx )− r−(kx )|2 cos2(ϕ). (5.26)

This dispersion relation admits no zero energy solutions for kx 6= 0 and α 6= 0. The
parameters values yielding E(kx = 0) = 0 are the topological phase transitions, and they
occur when

(r++ r−)|kx=0 = 0. (5.27)

In the derivation of the Andreev spectrum (5.26) we neglected the effect of spin-orbit
interactions in the y direction since W ¿ lSO. For completeness, we analyze the impact
of this spin-orbit coupling on the condition for gap closing at kx = 0. In the presence of
transverse spin-orbit coupling, one needs to take into account the Hamiltonian (5.15)
including the ασx py term. Then the boundary condition at the NS interface needs to
be modified in order to ensure the current conservation. Integrating the Schrödinger
equation near the interface y = 0 yields:

1

m(y)
pyσ0ψ(y)

∣∣∣0+

0−
+ α

ħσxψ(0) = 0. (5.28)
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Since at kx = 0, the Hamiltonian (5.15) commutes with σx , the scattering states in the
semiconductor region are also eigenstates of σx . Matching the wave functions at the
NS interface and solving the scattering problem results in a condition for closing the
excitation gap identical to Eq. (5.27), but with the modified scattering phases r± (5.25):

k± =
[2mn

ħ2 (E +µn +ESO ∓EZ )
]1/2

, ESO = mnα
2

2ħ2 . (5.29)

For our parameter choice ESO ≈ 40µeV, and is more than two orders of magnitude smaller
than δ. This confirms that spin-orbit dynamics in y direction is negligible.

5.4.2. TYPICAL PHYSICAL PARAMETERS OF THE HETEROSTRUCTURE
To consider a specific example of the system parameters we take InSb nanowires [30]
with effective mass mn = 0.015me (here me is the free electron mass), and with spin-orbit
length lSO =ħ2/mnα≈ 250nm. The superconductor in the heterojunction is aluminum,
with ms ≈ me and chemical potential µs = 11.7eV. A thin Al film has the bulk supercon-
ducting gap ∆= 0.25meV and the critical magnetic field Bc that varies from around 1.5 T
to 2 T.

While most of our results scale trivially with W , we choose W = 100nm whenever it is
necessary to compare the magnetic field or chemical potential scales to the experimental
parameters. This results in δ≈ 0.6meV À∆, well within the requirements of the short-
junction approximation.

5.4.3. MODELING THE NS INTERFACE
The final crucial parameter of the hybrid system is the transparency of the NS interface.
In the model Hamiltonian (5.15) the interface properties are set by the velocity ratio
v±/vs , the only way the superconductor Hamiltonian parameters enter the scattering
matrix (5.25). We use the vs as a free parameter allowing us to study the effect of the
interface properties on the topological phase diagram.

While the Fermi energy difference between aluminum and the semiconductor may
span several orders of magnitude, the Fermi velocities do not differ so much because of a
smaller effective mass in narrow band semiconductors. Specifically, the Fermi velocity
in aluminum is vs ∼ 2×106 m/s, while v± ∼ 2×105 m/s at a relatively low µn = 3meV,
resulting in T & 0.4. In real systems, the microscopic interface properties such as coupling
strength and charge accumulation further influence the interface transparency. In the
absence of a Schottky barrier, extra charge density at the interface smoothens the sharp
change in velocity between the semiconductor and the superconductor and further
enhances the transparency.

Transparency of the NS interface is hard to measure experimentally due to the compli-
cated geometry of the normal metal-nanowire-superconductor samples. The experiments
using high ∆ superconductors such as NbTiN are in a long junction regime allowing us
to estimate T because the induced superconducting gap is ≈ Tδ. On the other hand,
tunneling spectroscopy only provides a lower bound on the transparency: T &∆/δ in the
short-junction regime.

To explore the impact of interface transparency on the MBS properties we adopt two
choices of vs : the highly transparent interface corresponding to vs ≈ v± and an interface
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Figure 5.2: Comparison of the Andreev spectra of a transparent NS junction between analytical short-junction
predictions (SJT), numerical short-junction results including the spin-orbit interaction in the y direction (SJN),
and exact diagonalization of the BdG Hamiltonian (5.18) (ED). The system parameters are chosen as in Sec. 5.4.2
and 5.4.3. The longitudinal momentum is either kx = 0 (red), or finite such that the spectrum stays always

gapped (blue). Momentum kx is in units k0
F =

√
2mnµn /ħ2, and µs =µn = 3meV.

with a finite transparency where we fix the value of µs to a constant. For convenience
we choose an anisotropic mass in the superconductor ms,y = mn , ms,x = m∥ À mn ,
so that µs = µn results in a perfect transmission at a kx = 0 and B = 0. The condition
m∥ À mn ensures that vs only weakly depends on kx , as it should due to the Fermi
surface in the superconductor being much larger than in the semiconductor. In most
calculations we use m∥ = 10mn , however our conclusions are not sensitive to this choice
(see Appendix 5.10 for details).

Adapting the calculations of Sec. 5.4.1 to the case of anisotropic mass and transpar-
ent limit yields the same result for the excitation spectrum (5.26), up to replacing the
transverse momentum q in the superconductor with

q =
[

2mn

ħ2 µs − mn

m∥
k2

x

]1/2

. (5.30)

5.4.4. COMPARISON WITH TIGHT-BINDING DISPERSION SIMULATIONS
To verify the correctness of the spectrum in the short-junction limit, Eq. (5.26), we com-
pare the analytical expressions with dispersion relations calculated using a Hamilto-
nian (5.15) discretized on a square lattice with lattice constant a = 0.5nm and simulated
using Kwant package [31]. We first numerically obtain the scattering matrix Se (kx ) of the
normal region and use it as an input to Eq. (5.9) to obtain the dispersion relation of the
hybrid system.

A further comparison is provided by modeling the hybrid system using the full BdG
Hamiltonian (5.18) and calculating several eigenstates closest to the Fermi level. In this
case, the junction remains infinite along the wire, but instead of a superconducting lead,



5.5. ANALYSIS OF THE TOPOLOGICAL PHASE DIAGRAM

5

109

0 2 4 6 8 10 12 14 16

Magnetic field B [2δ/gµB ]

−1.0

−0.5

0.0

0.5

1.0

in
d
e
x
Q
,
E
/
∆

Figure 5.3: The Andreev spectrum and the topological index Q (5.31) as a function of magnetic field. Trivial
phase has Q =+1, topological phase Q =−1. The junction is in the transparent regime with µs =µn = 3meV.

we attach a large superconductor with width WSC ≈ 9µm À ξS.
A comparison between analytics and the two numerical methods at a fixed chemical

potential is shown in Fig. 5.2 and shows nearly perfect agreement between different
methods. Slight deviations of exact diagonalization results occur near the bulk gap,
caused by corrections to the short-junction approximation.

5.5. ANALYSIS OF THE TOPOLOGICAL PHASE DIAGRAM

5.5.1. PHASES BOUNDARIES AND THE SPECTRAL GAP
Equation (5.27) yields the closing of the spectral gap and the topological transitions in
the model. This allows us to define the topological invariant of the Hamiltonian as

Q = sign[Im(
√−r∗−r+)]|kx=0, (5.31)

where the sign of the square root is fixed by the analytic continuation and chosen such
that Q = 1 in the trivial state. A typical spectrum at kx = 0 as well as Q for a fixed µ is
shown in Fig. 5.3.

In addition to identifying the topological phase boundaries for each set of parameters
(B ,µn) we calculate the spectral gap

∆spec = min
kx

|E(kx )|, (5.32)

with E(kx ) given by Eq. (5.26). The minimization is carried over all kx present in the
superconductor. In general, the dispersion relation has several local minima, as shown in
Fig. 5.4, with the total number of minima approximately equal to the number of transverse
modes in the normal region.

The resulting topological phase diagram of a transparent junction (with µs = µn) is
shown in Fig. 5.5. For typical junction parameters (as described in Sec. 5.4.2) gµB Bc ≈ 9δ,
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Figure 5.4: A schematic of the dispersion relation of the junction for typical parameters. The dispersion
relation near local minima ∆0 and ∆1 of the Andreev state energy is well approximated with a gapped Dirac
dispersion relation, with Dirac cones marked with dashed lines. When the number of available modes in the
semiconductor increases, the number of minima at finite momenta grows, but the outermost minimum stays
located approximately at kx = kn,F .

and the phase diagram for higher field values does not apply to such junctions. The
minimal value of the critical field in this phase diagram corresponds to B∗ ≈ 0.7T. Near
the topological phase transitions ∆spec =∆0, the spectral gap at kx = 0 (see Fig. 5.4), and it
varies linearly with the distance ε from the phase transition either along the µ or EZ axis:

∆spec =∆0 ∼∆ ε
δ

. (5.33)

Deep in the topological phase, ∆spec is limited by the gap ∆1 at kx ≈ kn,F (see Fig. 5.4),
similar to the phenomenological model of Eq. (5.14). Since ∆spec must vanish linearly
with α in this regime, we get

∆spec =∆1 ∼∆
√

ESO

δ
. (5.34)

In both estimates we assumed µ∼ EZ ∼ δ, and T ∼ 1. Comparing Eqs. (5.33) and (5.34)
we find the energy scale for the transition between the two behaviors ε∗ ∼√

ESOδ.

The most unusual feature of the topological phase diagram in Fig. 5.5 is the smooth
behavior of the topological phase boundary, different from the hyperbolically-shaped
boundary E 2

Z >∆′2+µ2 of the phenomenological models [6, 7, 22]. This difference appears
not due to the short-junction limit—since the magnitude of the gap does not impact
the topological phase boundary—but rather because of the high interface transparency.
The inset in Fig. 5.5 shows the shape of the topological phase boundary where we have
reduced the transparency by fixing µs at a high value. We find that in this case the phase
boundary has a hyperbolic shape predicted by the phenomenological model.
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Figure 5.5: The spectral gap times the topological index Q∆spec/∆ ∈ (−1,1) as a function of chemical potential
µ and magnetic field B . Here we consider a transparent NS interface µ = µs = µn and an anisotropic mass
in the superconductor m∥ = 10 mn , m⊥ = mn . The phase boundaries Eq. (5.27) are given by continuous red
lines. The central region of the phase diagram is the topological phase Q = −1. The inset shows the phase
boundaries in a similar parameter range for a junction with µs = 11.7eV, ms = 0.015 mn resulting in a low
interface transparency.

5.5.2. DECAY LENGTH OF MBS
Exact evaluation of the MBS decay length starting from Eq. (5.26) is not possible because
the spectrum in the short-junction approximation does not correspond to a local Hamilto-
nian (the same fact manifests in the complex nonlinear dispersion of the Andreev states).
Nevertheless, the decay length is approximated well by assessing the contributions of
different local minima of the dispersion relation, as shown in Fig. 5.4. A gapped Dirac
cone with velocity v and gap ∆ results in a wave function decay length ξ=ħv/∆ at E = 0.
The size of the MBS ξM is set by the slowest decaying component of the wave function, or
the largest ξ.

Once again, it is instructive to estimate ξ using scaling arguments in two regimes: near
a topological transition and deep in the topological phase. At the phase transition point
the slope of the Dirac cone at kx = 0, v0 ∝α since without spin-orbit coupling the band
touching at kx = 0 must have a parabolic shape. Since the bulk superconductor gap ∆
must enter the spectrum only as an overall prefactor, we get

ħv0 ∼ ∆W 2

lSO
, ξ0 = ħv0

∆0
∼ W 2δ

lSOε
. (5.35)

The velocity at the outermost Dirac point must not depend on α, resulting in

ħv1 ∼∆W, ξ1 = ħv1

∆1
∼ lSO. (5.36)

The two length scales ξ0 and ξ1 become equal at ε∼ ESO ¿√
ESOδ= ε∗.

We obtain the behavior of ξ in the tight-binding simulations using Kwant [31] for
the same parameters as in Fig. 5.5. In order for the self-energy to become local in the x
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Figure 5.6: The largest decay length of subgap modes in units of wire width W , as a function of chemical
potential µ and magnetic field B . At the topological transitions the decay length rapidly diverges. The junction
is in a fully transparent regime with µn =µs and m∥ =∞ in the superconductor.

coordinate we neglect the transverse dispersion in the superconductor and set m∥ =∞.
We then integrate out the superconductor and add a self-energy to the semiconductor.
Finally, similar to Ref. [32] we perform an eigendecomposition of the translation operator
in the x direction at zero energy to obtain the evanescent waves ψ∝ e−κx , with κ the
eigenvalue of the translation operator. The largest decay length is:

ξ= maxRe[κ]−1, (5.37)

where the maximum is taken over all the eigenvalues. Then in the topological phase
ξM = ξ . The results are presented in Fig. 5.6. The divergence in decay lengths seen in
Fig. 5.6 corresponds to topological transitions identical to the ones found in Fig. 5.5.
Figure 5.6 also confirms that ξM saturates at a distance ε ∼ ESO away from that phase
transition (here ESO ≈ 40µeV).

We now refine the scaling arguments of Eqs. (5.35) and (5.36) by using Eq. (5.26). In
particular, near the topological transition, the decay length is determined by the spectral
gap ∆0 and the velocity ħv0 = |∂E/∂kx |∆0=0,kx=0:

∆0 = ∆
2
|r++ r−|kx=0, (5.38)

with Fermi velocity

ħv0 = α∆

EZ
. (5.39)

Therefore the MBS decay length ξM is inversely proportional to the magnetic field and
spin-orbit length near the Majorana phase transitions.

Deep in the topological phase it is more difficult to obtain a closed form approximation
for the decay length. Instead, we find the Fermi momentum and the spectral gap by
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Figure 5.7: Scaling behavior of the MBS decay length ξM deep in the topological phase. Comparison between
symbolic calculation of the decay length from the linearization of the energy dispersion (5.26) (blue lines) and
the numerical calculation of the slowest decaying mode Eq. (5.37) (red markers). (a) The decay length has a
linear dependence with magnetic field B deep in the topological region, µ= 3meV. (b) Linear dependence with
spin-orbit length lSO =ħ2/mα. The magnetic field is B = 1.5T and chemical potential µ= 3meV.

performing numerical minimization of the energy dispersion (5.26). The Fermi velocity
near kF 6= 0 follows immediately:

ħv1 = ∆
2

∂

∂kx
|r++ r−|α=0,kx=kF . (5.40)

Taking the ratio (5.36), it follows that the MBS decay length does indeed grow linearly
with magnetic field and spin-orbit length deep in the topological phase [see Fig. 5.7], in
qualitative agreement with the numerical calculation using Eq. (5.37).

Our results for the scaling of ξM with B and lSO agree with the predictions of the phe-
nomenological 1D model both near the topological transition or deep in the topological
phase (see, e. g., Ref. [33]), but we find no dependence of ξM on ∆.

5.6. SPECTRUM OF FINITE LENGTH JUNCTIONS
To directly verify the existence of a MBS and the applicability of the short-junction limit to
our system, we solve the discretized BdG Hamiltonian of a large rectangular system with
a finite superconductor. The system is divided into semiconductor and superconductor
regions, both modeled by the BdG Hamiltonian (5.18). The length of the system is L =
3µm, sufficiently long to ensure that the overlap between MBS is small. Further, we
choose the width of the superconductor sufficiently large WSC = 1.4µm ≈ 2ξS. The
lattice constant in the tight-binding simulation is 10 nm. Finally, the remaining model
parameters are chosen according to Sec. 5.4.2 and Sec. 5.4.3. We determine numerically
several lowest energy states and compare them with ∆spec calculated in Sec. 5.5, as shown
in Fig. 5.8.

We observe that the energy of most subgap states is bounded from below by an energy
slightly lower than ∆spec, as expected close to the short-junction regime. At B > B∗ ≈ 1T
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Figure 5.8: Comparison between the predictions of the analytical short-junction approximation and a numerical
spectrum of a finite NS junction. Solid line: ∆spec calculated using Eqs. (5.26) and (5.32) as a function of
magnetic field. Dotted lines: 10 lowest energy states in a finite size NS junction using the same parameters. The
magnetic field is in units of 2δ/gµB , with level spacing δ defined in Eq. (5.11). The junction is in a transparent
regime, the superconductor has anisotropic mass m∥ = 10mn , and the rest of parameters are as specified in
Sec. 5.4.2. At a single end of the nanowire, there is only one MBS in the topological phase (1T . B . 3T, for
semiconductor width W = 100nm) and two in the trivial phase at high field, due to the chiral symmetry.

the system enters a topological regime and states with E ¿∆spec formed by two coupled
MBS appear. The coupling of these states decays exponentially with the size of the
nanowire L. Finally after the system undergoes the second gap closing and enters the
trivial phase at B ≈ 3T additional low energy states appear due to the presence of chiral
symmetry of the Hamiltonian (5.15) [34–36]. We therefore conclude that our calculations
fully apply to finite nanowires in the short-junction regime.

Furthermore, we verify in Appendix 5.10.2 using exact diagonalization that the crit-
ical field B∗ is indeed independent of the superconducting gap ∆. With increasing ∆
above ETh ≈ 1meV the system exits the short-junction regime. Nevertheless, the critical
magnetic field stays constant, in agreement with the proof of Sec. 5.3.

5.7. ORBITAL FIELD EFFECT IN THIN SHELL APPROXIMATION
We now turn to evaluate the consequences of the orbital effect of the magnetic field,
known to strongly influence MBS properties [32, 37–39], in the short-junction limit. This
effect does not manifest in the model of Sec. 5.4 when magnetic field points in the x direc-
tion. To include the orbital effect we use a thin shell approximation, when the electron
wave function in the semiconductor is confined to its surface, similar to the system stud-
ied in Ref. [38]. However, unlike Ref. [38] we do not assume a constant induced gap and
consider instead the nanowire contacted by a bulk superconductor, as shown in Fig. 5.9.
We model the coupling to the superconductor as two infinite planar superconductors
on each side of the 2D uncovered wire section. By doing so we neglect the possibility
for electrons to tunnel through the superconductor to the other side of the uncovered
section, which is justified by the density mismatch between the superconductor and the
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Figure 5.9: (a) A cross section of a NS hybrid junction. The magnetic field is parallel to the wire axis, while the An-
dreev bound state trajectories are confined to the nanowire surface. (b) The equivalent two-dimensional system
defined on the plane (x,θ). Since we neglect the possibility for electrons to tunnel through the superconductor,
we consider the superconducting leads at θ < 0 and θ > θ0 infinite.

semiconductor. The thin shell limit is oversimplified and it overestimates the orbital effect
of a magnetic field, however it provides an upper bound on the impact of the orbital effect
and remains analytically tractable.

The superconductor covers the wire over an angle 2π−θ0, while both the wire and the
superconductor are translationally invariant in the x direction. In cylindrical coordinates
(x,θ) the electron Hamiltonian on the nanowire surface reads:

H =
[

p2
θ
+p2

x

2m
−µ

]
σ0 − α

ħ pxσy +EZσx , (5.41)

with pθ =−iħR−1∂/∂θ, and R the radius of the nanowire. We assume that the magnetic
field is fully screened from the superconductor and choose a gauge where the vector
potential A = 0 in the uncovered part of the surface, while the two superconducting leads
have a phase difference φ= (2e/ħ)πBR2. Compared to the previous sections where the
treatment was more general, we assume from the start the transparent junction limit,
when Fermi velocities at kx = 0 are identical in the superconductor and the semiconductor
and we also neglect the spin-orbit coupling in the transverse direction, as appropriate for
lSO À Rθ0.

We solve the scattering problem in the basis of conserved spin projections set by
Eq. (5.20) corresponding to the basis of incoming and outgoing modes:

aT = (a+
L , a−

L , a+
R , a−

R ), bT = (b+
L ,b−

L ,b+
R ,b−

R ), (5.42)

with a and b the amplitudes of incoming and outgoing modes, R denoting the modes at
θ ≤ 0, L the modes at θ ≥ θ0, and ± superscript corresponding to the two conserved spin
directions (5.20). For each spin projection the scattering matrix is given by the classic
result for transmission through a potential barrier:

S± =
(
r± t±
t± r±

)
, (5.43)
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Figure 5.10: (a) Majorana phase diagram Q∆spec of a transparent NS junction with µs = µn = µ, ms,x = m∥,
ms,y = m, mn = m, and m∥ = 10m, as a function of chemical potential and magnetic field. The covering angle
is θ0 = 2rad, so that the width of the uncovered section Rθ0 is equal to the wire diameter. (b) An example of
Andreev spectrum at kx = 0, µn = µs = 3meV, and other parameters the same as in (a) in the presence and
absence of the orbital effect. Panel (b) additionally presents a comparison between short junction theoretical
(SJT), numerical (SJN), and exact diagonalization (ED). The theoretical spectrum without orbital effect (NO) is
in gray. The magnetic field is in units of 2δ/gµB with δ=ħ2π2/2mR2θ2

0 .
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with

r± = (q2 −k2
±)sin(k±L)

(q2 +k2
±)sin(k±L)+2i qk± cos(k±L)

,

t± = 2i qk±
(q2 +k2

±)sin(k±L)+2i qk± cos(k±L)
, (5.44)

with momenta k± and q defined by Eq. (5.30). We then transform the scattering matrix
to the basis of time-reversed modes (5.21) and calculate the Andreev spectrum using
Eq. (5.9) with the phases of superconducting leads equal to φR = 0 and φL =φ. We verify
again that the dispersion relation obtained this way agrees well with two numerical tight-
binding simulations at fixed chemical potential and that the difference also stays small
if we include spin-orbit coupling in the transverse direction [see Fig. 5.10(b)]. As before,
the spectrum is generically gapped except at kx = 0, where topological phase transitions
occur.

The resulting Majorana phase diagram is shown in Fig. 5.10(a), and it consists of
several narrow topological regions centered around φk = (2k+1)πwith k integer. At these
values of magnetic field, the two superconducting leads have a phase difference of π, thus
fully suppressing the induced gap in the transparent limit. The Zeeman field then opens
a topological gap resulting in a finite extension of the topological phases around φk . We
conclude that in the thin shell limit, the orbital effect of the magnetic field reduces B∗ by
a factor ∼ 10 for typical junction parameters (we once again note that the thin shell limit
overestimates the orbital effect of the magnetic field). Despite that, it is the Zeeman field
responsible for opening the topological gap.

5.8. NUMERICAL STUDY OF A THREE-DIMENSIONAL NANOWIRE
To confirm our findings in a model with a more realistic geometry, we numerically cal-
culate the phase diagram of a three-dimensional nanowire in the short-junction limit.
The system consists of a semiconductor nanowire infinite in the x direction and with a
square cross section contacted by a bulk superconductor occupying y < 0 half space [see
Fig. 5.1(a)].

Due to the large Fermi surface mismatch between the superconductor and the semi-
conductor we neglect the electron dispersion in the x and z directions in the supercon-
ductor. Therefore, following Sec. 5.4.2 we set ms,y = mn = 0.015me and ms,x = ms,z =∞.
Since the semiconductor modes with different values of kz have different interface trans-
parencies, we cannot ensure a transparent interface for all the modes and instead fix
µs = 8meV while varying µn ≡ µ. The remaining system parameters are specified in
Sec. 5.4.2.

The model Hamiltonian is a three-dimensional generalization of Eq. (5.15) discretized
on a cubic lattice. We include the orbital effect of the magnetic field using Peierls substi-

tution in the gauge A = (
0,0,B yΘ(y)

)T . This ensures that the vector potential is constant
in the x direction and that it vanishes at the interface with the superconductor.

We calculate the excitation spectrum using Eq. (5.9) to find∆spec by minimization over
kx . The resulting phase diagram of ∆spec is shown in Fig. 5.11. Comparing the top panels
of Fig. 5.11 with Fig. 5.5 we observe the two sharp minima of B∗(µ). These correspond to
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Figure 5.11: Spectral gap ∆spec/∆ dependence on chemical potential µ in the nanowire and magnetic field B of
a square nanowire without (top panels) and with (bottom panels) orbital effect of the magnetic field. Panels (a),
(c) show results for wire section 100nm×100nm, while (b), (d), for 120nm×120nm. The white box in the right
panels shows the same parameter range rescaled by a factor (100/120)2 to highlight the W 2 scaling of the phase
diagram.

the appearance of the additional bands with a different value of kz and a minimum in the
interface transparency. 1

Similar to our observations from Sec. 5.7, the orbital effect of the magnetic field has a
strong effect on the shape of the topological phase boundaries and reduces both ∆spec

and B∗ similar to the thin shell simulations. Increasing the cross section of the wire
[Fig. 5.11(a), (c), against (b), (d)] confirms that in 3D the critical fields preserve the scaling
with B∗ ∼ 1/W 2 independent of the presence or absence of orbital effects.

5.9. CONCLUSIONS AND OUTLOOK
We have studied the impact of a small superconducting gap on the properties of MBS in
semiconductor-superconductor junctions. The short-junction formalism, appropriate
for this limit, allows us to draw universal conclusions about the MBS properties. Contrary
to the intuitive expectations, we show that the reduction of the superconducting gap
does not alter the Majorana phase diagram and does not change the size of the MBS. We
therefore conclude that in most practical systems the superconducting gap should not be
used as an important parameter in optimizing MBS properties.

On the other hand, we find that the transparency of the semiconductor-superconductor
boundary has an important and previously overlooked effect on the Majorana phase dia-
gram. An interface with T ≈ 1 produces a phase boundary between trivial and topological

1The code for the tight-binding simulations of the two-dimensional and three-dimensional junctions is available
as the Supplemental Material of [40].
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phases which depends weakly on the chemical potential. This is in contrast to T ¿ 1,
used in most prior research, that results in the critical magnetic field having an oscillatory
dependence on chemical potential with minima corresponding to the opening of a new
band.

Orbital effect of magnetic field plays a dual role: It reduces the critical magnetic field
as well as the spectral gap in the topological regime. Contrary to the predictions of a
phenomenological model that assumes a constant induced gap, we show that relative
importance of magnetic field cannot be controlled by the superconducting gap or the
diameter of the nanowire.

Our findings suggest that creation of MBS in proximitized two-dimensional electron
gases laterally contacted by a superconductor is a promising direction of further research.
In these systems the relative strength of the orbital and the Zeeman effect of magnetic
field is controlled by an extra tuning parameter: the ratio between the semiconductor
thickness and its width. Additionally, the critical magnetic field in such devices could be
tuned using a side gate, effectively changing the semiconductor width without altering
the superconductor-semiconductor interface transparency.

Another important further direction of research is the interplay between junction
transparency and disorder. Since a transparent interface results in a weaker dependence
of the critical magnetic field on the chemical potential, it is reasonable to conjecture that
the sensitivity of MBS properties to disorder is also reduced in the transparent regime.

5.10. APPENDIX

5.10.1. INTERFACE TRANSPARENCY IN A TWO-DIMENSIONAL JUNCTION
The validity of the short-junction approximation depends on NS interface transparency T .
In this section, we review the transparency of a sharp interface between two materials with
a parabolic dispersion. We provide quantitative arguments for the choice of anisotropic
mass in the superconductor in modeling a transparent interface.

We consider a planar NS interface with the boundary located at y = 0, and both
materials occupying a half-plane, and solve the scattering problem as outlined in Sec. 5.4.1.
Also following Sec. 5.4.1, we neglect the spin-orbit scattering at the interface, and use
the boundary condition (5.23). At a given energy E there are generally two modes in the
semiconductor and two spin-degenerate modes in the superconductor with momenta in
the y direction: k± and q , respectively:

k± =
[

2mn

ħ2 (E +µn ∓
√

E 2
Z +α2k2

x )−k2
x

]1/2

, (5.45)

q =
[

2m⊥
ħ2 (E +µs )− m⊥

m∥
k2

x

]1/2

,

where we use the same notation as in Sec. 5.4.1 the superconductor has anisotropic mass
(m⊥,m∥).

The transmission probabilities of two spin orientations (±) follow immediately:

T± = 4
(√ v±

vs
+

√
vs

v±

)−2
, (5.46)
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Figure 5.12: Transmission probability of one of the spin polarizations T− of an infinite NS junction. (a, c, and d)

T− as a function of magnetic field B in units of 2δ
gµB

, with δ defined in Eq. (5.11) and parallel momentum kx

(in units of k0
F =

√
2mnµn /ħ2). The momenta kx run over the Fermi surface of the semiconductor, which is

marked by the red line. (a) Using bare material parameters µn = 3meV, µs = 11.7eV, ms = me , mn = 0.015 me .
(b) T− versus B and µn at kx = 0 and the same parameters as in (a). (c) T− when the chemical potential and mass
are equal in the superconductor and the semiconductor. (d) T− for anisotropic mass in the superconductor
(m∥,m), mn ≡ m = 0.015 me , with m∥ = 10 m, µn = µs = 3meV. Only evanescent solutions exist in the white
regions; transmission T− becomes imaginary.
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with vs =ħq/m⊥ and v± =ħk±/mn the velocities normal to the interface in two materials.
Both T+ and T− exhibit similar behavior, except for T+ vanishing inside the helical gap. In
contrast, T− is always well defined at kx = 0 for µn > 0. For concreteness, we illustrate the
dependence of T− on the Hamiltonian parameters.

Let us first start with realistic parameters both in the superconductor and the semi-
conductor. The chemical potential in the nanowire µn is gate tunable. We choose to fix
it at 3 meV, comparable to the level spacing in a nanowire. The rest of the parameters
are specified in Sec. 5.4.2. The results are plotted in Fig. 5.12(a), for all momenta in the
semiconductor Fermi surface and an experimentally relevant range of magnetic fields.
The transparency is mostly around 40% but rapidly vanishes near the Fermi momentum.
Modifying the chemical potential in the wire does not appreciably increase the trans-
parency [see Fig. 5.12(b)]. The low transparency is artificial and due to the choice of a
sharp change in mass and chemical potential across the interface.

Choosing m⊥ = m∥ = mn and µs = µn results in a nearly perfect transmission at all
angles, as shown in Fig. 5.12(c). However, this parameter choice is also unphysical since
the semiconductor Fermi surface becomes larger than the superconductor one at any
finite magnetic field. Then the interface becomes opaque for higher momenta kx .

Finally, choosingµs =µn and an anisotropic mass in the superconductor (ms,x ,ms,y ) =
(m∥,mn), with m∥ À mn results in an interface that stays transparent for all kx [see
Fig. 5.12(d)].

5.10.2. INDEPENDENCE OF CRITICAL MAGNETIC FIELD ON THE SUPERCON-
DUCTING GAP

Here we verify the validity of our conclusions about the scaling of the eigenenergies and
the independence of B∗ on ∆ using exact diagonalization of a finite BdG Hamiltonian
for the semiconductor-superconductor heterostructure at different values of the super-
conducting gap. We use the same setup of a finite heterojunction modeled with the BdG
Hamiltonian (5.18) as in Sec. 5.6. We check the behavior of the critical field and the bulk
band gap by tracking the energy of the second excited state while varying B for values of
∆ ranging from 40µeV to 3meV (almost two orders of magnitude). Our results for a het-
erojunction of size 3000nm×6000nm with a normal region occupying 3000nm×100nm
are shown in Fig. 5.13.

When ∆& ETh ≈ 1meV the system transitions to the long junction regime, so that the
ratio ∆spec/∆ continues to decrease, while ∆spec becomes almost independent of ∆. In
the opposite limit ∆¿ ETh, we observe that ∆spec/∆ tends to a constant, in agreement
with the short-junction limit prediction. The field values B∗ where ∆spec vanishes stay
almost constant, with the residual variation due to the effect of a finite system size and
lattice constant.

REFERENCES
[1] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys.

83, 1057 (2011).

[2] M. Leijnse and K. Flensberg, Introduction to topological superconductivity and Majo-
rana fermions, Semicond. Sci. Technol. 27, 124003 (2012).

http://dx.doi.org/10.1103/revmodphys.83.1057
http://dx.doi.org/10.1103/revmodphys.83.1057
http://dx.doi.org/ 10.1088/0268-1242/27/12/124003


5

122 REFERENCES

0.0

0.2

0.4

0.6

0.8

1.0
E
/
∆

(a)
∆ = 0.04

∆ = 0.08

∆ = 0.16

∆ = 0.32

∆ = 0.64

∆ = 1.0

∆ = 2.0

∆ = 3.0

0 2 4 6 8

Magnetic field B [2δ/gµB ]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
(m

eV
)

(b)

Figure 5.13: The energy of the second excited state of a finite nanowire junction calculated using exact diago-
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derived for the short-junction limit. The legend applies to both panels. The superconducting gaps ∆ are in meV.
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6.1. INTRODUCTION
A hybrid structure containing a semiconductor with strong spin-orbit coupling coupled to
a superconductor can become topological upon application of a magnetic field stronger
than a critical field Bcrit, with Majorana bound states appearing on its edges [1, 2]. Ma-
jorana bound states are a promising candidate to form the basis of a stable platform for
topological quantum computing [3–6]. Much of the experimental effort [7–11] currently
focuses on creating pairs of Majorana bound states in hybrid normal-superconductor
(NS) nanowire structures.

Recently, a modified setup has been proposed [12, 13] relying on a superconductor-
normal-superconductor (SNS) junction to lower the critical magnetic field Bc by introduc-
ing a superconducting phase difference φ. When both NS interfaces are transparent the
SNS junction enters the topological phase atφ=π at any finite B field. Two groups [14, 15]
have realized this system experimentally, but did not yet observe a hard induced super-
conducting gap.

An important challenge in creating stable Majoranas is the appearance of a soft gap—a
power law decay instead of an exponential decay of the density of states near zero energy.
In clean systems a soft gap arises due to the reduction of the induced gap for states with the
momentum directed along the junction [16, 17]. From a semiclassical perspective, these
momenta correspond to long paths through the semiconductor without interruption by
the superconductor, shown in Fig. 6.1(a). These long trajectories have long flight times
τf ≈ Lt/vF (see Fig. 6.1), where Lt is the trajectory length and vF the electron Fermi velocity.
Equivalently, the Thouless energy of these trajectories ETh =ħ/τf is small, resulting in a
small gap Egap ¿∆. This problem does not appear when the Fermi surface is small and
the zero point motion dominates the transverse velocity, making a low filling of the bands
a possible workaround [17, 18]. However, tuning the system to a low chemical potential
requires a precise knowledge of the band positions and makes the device more sensitive
to disorder or microscopic inhomogeneities. On the other hand, disorder scatters these
long trajectories and introduces a cutoff on the scale of the mean free path [19–21] which
Ref. [22] proposes to use to improve Majorana properties; however, disorder is impossible
to control to a required precision experimentally.

We propose a new experimental setup (see Fig. 6.1(b)) for the creation of Majoranas
that eliminates long trajectories and therefore prevents the appearance of a soft gap, while
also increasing the topological gap (the smallest gap in the dispersion relation) by more
than an order of magnitude, depending on the parameters. The setup consists of a zigzag
or snake-like geometry for the semiconductor where long trajectories are not possible
due to the geometry.

6.2. SETUP
We consider a Josephson junction (Fig. 6.1) consisting of a 2D strip of semiconductor,
with superconductors on both sides [12, 13]. (In the App. 6.7.1 we demonstrate that
similar physics also occurs in devices with a single superconductor.) We modulate the
shape of the normal region to be either zigzag as depicted [Fig. 6.1(b)] or a more smooth
sinusoidal-like shape. Similar to the straight system [12], we apply a magnetic field Bx

along the x-axis. The Bogoliubov-de Gennes Hamiltonians HN and HSC of the normal



6.2. SETUP

6

129

Figure 6.1: The straight (top) and the zigzag (bottom) SNS junction. The zigzag pattern has a peak-to-peak
amplitude zy and a period zx . The yellow areas are superconductors with a phase difference of φ between the
top and the bottom. The middle area is the semiconductor of width W . A magnetic field B pointing in the
x-direction causes a Zeeman splitting in the semiconductor. A trajectory traveling at a grazing angle (red curve)
has a very long flight time τf and a very small induced gap Egap ¿∆. At the same time, the zigzag geometry
limits the length of a trajectory, therefore lowering τf and increasing Egap.
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region and the superconducting region are

HN =
ħ2

(
k2

x +k2
y

)
2meff

−µ+α(
kyσx −kxσy

)τz +EZσx , (6.1a)

HSC =
ħ2

(
k2

x +k2
y

)
2meff

−µ
τz +∆cos

φ

2
τx +∆sin

φ

2
τy . (6.1b)

Here, kx and ky are the momentum components of the wavevector, µ is the chemical
potential, and meff is the effective electron mass. The strength of the Rashba spin-orbit
coupling is α and a Zeeman splitting EZ = 1

2µB g Bx . The superconductor has a coupling
strength∆, and the phases of the superconductors are ±φ/2. The Hamiltonian acts on the

spinor wave functionΨ= (
ψe↑,ψe↓,ψh↓,−ψh↑

)T , where ψe , ψh are its electron and hole
components, and ψ↑, ψ↓ are the spin-up and spin-down components. The Pauli matrices
σi act on the spin degree of freedom and τi act on the electron-hole degree of freedom.
We consider a zigzag pattern with a period zx , a peak-to-peak amplitude zy , and W the
width of the junction [see Fig. 6.1(b)]. Later we relax this assumption and show that the
exact shape is unimportant.

We discretize our continuum Hamiltonian [Eq. (6.1)] on a square grid and implement
a tight-binding model using Kwant [23]. To preferentially sample important regions of
parameter space, we use the Adaptive package [24]. The entire source code and the
resulting raw data are available in Ref. [25].

Unless noted differently, the Hamiltonian parameters are α = 20meVnm, g = 26,
meff = 0.02me, µ= 10meV, Bx = 1T, φ=π, and ∆= 1meV; and the geometry parameters
are W = 200nm, the period of the zigzag zx = 1300nm, the discretization contant a =
10nm, and the lengths of the superconductors LSC = 300nm. Our results only weakly
depend on the material parameters.

6.3. BAND STRUCTURES
We apply sparse diagonalization to the supercell Hamiltonian at different momenta kx

to compute the band structure. Because of the large periodicity of the zigzag and the
resulting large supercell, the band structure is heavily folded. In Fig. 6.2 we show the
resulting band structures of zigzag systems with varying zy . The introduction of the zigzag
has a striking effect: the bands flatten out and the topological gap increases by more than
an order of magnitude.

In the unfolded band structure of a straight system, shown in Fig. 6.2(a), the lowest
energy states occur at k ≈ kF . We interpret the increase of the gap Egap shown in Fig. 6.2(b)
and (c) as an effect of the zigzag geometry removing these long trajectories traveling at
grazing angles. Besides the increased Egap, the states from different segments of the zigzag
pattern have a negligible overlap and therefore have a vanishing quasiparticle velocity
v . This reduction in velocity strongly reduces the Majorana size, as we discuss in section
6.4. Finally, in a zigzag geometry, every trajectory encounters a superconductor close to
normal incidence. Normal incidence has a higher transmission probability for entering
the superconductor and therefore a higher Andreev reflection amplitude. This provides
another mechanism of the gap enhancement.
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Figure 6.2: Band structures of the system in Fig. 6.1(b) with different zigzag amplitudes. The blue lines cor-
respond to a trivial phase (φ = 0, Bx = 0) and the orange lines to a topological phase (φ = π, Bx = 1T). The
three subplots are for different amplitudes of the zigzag, with (a) a straight system zy = 0, (b) zy =W /2, and
(c) zy = W , where W = 200nm is the junction width. Subplot (a) has a different x-scale for kx < 0 from the
other subplots and displays the unfolded band structure. For the right-hand side of (a) (kx > 0), (b), and (c), the
folding is the same, such that the velocity v = dE/dk can be compared visually. Once there are no more straight
trajectories inside the junction (when zy =W ) the spectrum becomes insensitive to the momentum kx and
equivalently, the quasiparticle velocity v decreases. When the zigzag amplitude increases, the band gap Egap
increases by an order of magnitude. The combination of these ensures a significant decrease of the Majorana
size ξM ∝ v/Egap. The parameter values are listed at the end of Sec. 6.2.
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Figure 6.3: Density of Majorana wave functions
∣∣ψM

∣∣2 for different geometries. With (a) a straight system,
(b) a zigzag system, (c) a system where lines parallel to a sinusoid defines the normal region, and (d) similar
to (c) but with disordered edges. Inside the figure, we indicate the Majorana length (or coherence length)
ξM, the Majorana energy EM (the energy of the first excited state), and the topological energy gap Egap. We
observe that ξM for the straight system is almost two orders of magnitude longer and Egap more than an order
of magnitude smaller than for the zigzag systems. The robustness of Egap and ξM across the zigzag geometries
means that the details of the geometry do not matter for the improvements to occur. The length of the system is
3.5zx = 4550nm, the remaining parameter values are listed at the end of Sec. 6.2.

6.4. LOCALIZATION LENGTHS AND SHAPE EFFECTS

We model a finite system and compute the Majorana wave function in different geome-
tries: ribbon, zigzag, sine-like parallel curves, and a variant of the latter with disordered
edges. By diagonalizing the Hamiltonian, we find the Majorana energy EM, and by using
the corresponding eigenstate of that lowest energy, we get the wave function. When
determining the Majorana size ξM in a zigzag system, we reduce the finite size effects by
introducing a particle-hole symmetry breaking potential Vσ0τ0 on one edge, such that
one of the Majorana states is pushed away from zero energy. We then find ξM by fitting an
exponential to the density of the single Majorana wave function projected on the x-axis.
In the straight system we use the eigenvalue decomposition of the translation operator at
zero energy [18] for performance reasons.

We show the resulting Majorana wave function densities
∣∣ψM

∣∣2 in different geome-
tries in Fig. 6.3 using the same Hamiltonian parameter values. In the straight system
[Fig. 6.3(a)], we see that the decay of the density is long compared to the system size. This
is a result of the small topological gap combined with the quasiparticle velocity v ≈ vF
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Figure 6.4: A comparison of a straight device (left panels) and a zigzag one (right panels). The top panels show
the Majorana wave functions, near the left edge of the system, at the value of Bx for which Egap is maximized in
a straight geometry for µ= 10meV and φ=π as well as the values of the gap and the Majorana size. The other
panels show gap as a function of µ and Bx at φ=π (middle panels) and as a function of φ and Bx at µ= 10meV
(bottom panels). The dashed lines and the dot indicate the parameters used in the other panels. Additionally, in
subplot (c) we overlay the phase boundaries. The remaining parameter values are listed at the end of Sec. 6.2,
except with a = 5nm and LSC = 800nm.

yielding a large Majorana size

ξM =ħ v

Egap
. (6.2)

This result follows from an avoided crossing shape of the dispersion relation near the
Fermi momentum. Therefore, in straight junctions the wave function extends to the
center of the system, resulting in highly overlapping Majoranas and a Majorana coupling
EM comparable to Egap.

We observe that in zigzag systems the Majorana properties improve independent of
specific geometric details. All of the zigzag-type geometries have ξM improved by a factor
∼ 70 and have the Majorana wave function localized within one segment of the zigzag.
Further, the topological gap Egap is an order of magnitude higher than in the straight
junction, and as mentioned in section 6.3, the quasiparticle velocity v is more than an
order of magnitude lower.
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6.5. TOPOLOGICAL PHASE DIAGRAM
In Fig. 6.4 we compare the phase diagrams of the straight and the zigzag junction. We
plot Egap as a function of magnetic field and chemical potential (Egap(Bx ,µ)), and of
magnetic field and superconducting phase difference (Egap(Bx ,φ)) for both a straight
system [(c) and (e)] and a zigzag system [(d) and (f)]. Additionally, we plot the first 1300nm
(one zigzag period) of the wave functions [(a) and (b)] at the optimal point in parameter
space for the straight system. For the straight system, we calculate Egap by performing
a binary search in E for the energy at which the propagating modes start to appear [18].
Additionally, in Fig. 6.4(c) we plot the phase boundaries obtained by solving a generalized
eigenvalue problem [18]. Due to the large size of the zigzag supercell, we are unable
to apply these methods to zigzag geometries. Instead, we calculate Egap by finding the
absolute minimum of the spectrum Egap = min |E(k)|. By both observing the gap closings
and comparing to the topological phase diagram of the straight system, we then infer the
topology of the zigzag system and verify this by calculating the Majorana wave function of
a finite length zigzag. As a further check, in App. 6.7.2 we also compute Egap as function
of the angle of magnetic field and observe that the zigzag device protects Majoranas from
magnetic field misalignments.

Similar to the findings of Pientka et al. [12], we see that the straight geometry has a
diamond-shaped topological region in (φ,Bx ) space. The topological phase diagram of
the zigzag system has a qualitatively similar shape but a significantly increased topological
gap. The asymmetry of the phase diagram upon replacing φ→−φ is consistent with the
symmetry of the Hamiltonian, because both inversion and time-reversal change both
φ→−φ and Bx →−Bx .

6.6. DISCUSSION AND CONCLUSIONS
The zigzag geometry increases the topological gap in the high-density regime by more
than an order of magnitude, and substantially reduces Majorana size. The improvements
occur in a broad range of parameter values, moreover, even using Bx optimal for the
straight system in the high-density regime (Fig. 6.4), the Majorana size ξM and Egap are
still more than an order of magnitude better for the zigzag system. We expect that the
improvement of the device performance will significantly simplify the creation of Majo-
rana devices and the detection of Majorana states. Additionally, it offers a controllable
way to remove long trajectories, making it easier to rely on than disorder [22], which has a
similar effect.

A soft gap may arise due to mechanisms that do not involve ballistic trajectories: both
interface disorder and pair-breaking [26] or temperature and dissipation [27] may create
a soft gap. Further, in a multimode junction, the dependence of transmission [28] may
produce a subgap conductance similar to that in a device with a soft gap. The zigzag
geometry has no impact on these alternative phenomena, and it may therefore serve as a
tool to distinguish different mechanisms.

Our work is the first demonstration of the impact of the Majorana device geometry on
its performance, and it opens a possible research avenue of finding the optimal geometry.
A promising approach to tackle this question would rely on constructing a quasiclassical
model of the zigzag devices. Finally, we neglected several important physical effects,
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Figure 6.5: Same as Fig. 6.4 (c) and (d) but with one superconductor instead of two. We observe that the zigzag
geometry also increases the gap in this case.

such as disorder, electrostatics, the orbital effect of the magnetic field, and the finite
thickness of the sample. Although we do not expect these phenomena influence our
qualitative findings, a more detailed simulation should provide better guidance to future
experiments.

The zigzag geometry is within reach of the standard fabrication techniques as demon-
strated by an ongoing experimental project [29]. Further, according to our simulations,
the zigzag devices should be robust against the unavoidable variation in the experimental
device geometry. We therefore expect, that the new approach to controlling the proximity
superconductivity by means of modifying the geometry will become a commonly used
technique.

6.7. APPENDIX

6.7.1. ZIGZAG DEVICE WITH A SINGLE SUPERCONDUCTOR
A zigzag-shaped device with a single superconductor shows a similar enhancement of
the superconducting gap as the Josephson junction devices. We demonstrate this by
simulating a straight and a zigzag device and computing Egap(Bx , µ) in Fig. 6.5. We
observe that the order of magnitude increase of Egap also occurs upon the introduction of
a zigzag geometry.

6.7.2. DIRECTION OF THE MAGNETIC FIELD
Because the zigzag geometry cuts off long trajectories—leaving only short trajectories—
this device requires a less precise alignment of the magnetic field. To show this, we
perform a simulation of a straight and zigzag device with a rotated field (see Fig. 6.6). We
observe that the zigzag device still has a sizeable gap with a 10◦ misaligned magnetic field,
whereas a 1◦ misalignment makes a straight device gapless.

Strong screening of the magnetic field by the superconductors may distort the mag-
netic field pattern. To determine whether this effect degrades the device quality, we
simulate a device with the magnetic field parallel to the NS interface, shown in Fig. 6.7.
We find that the resulting gap is comparable to that of a device with the magnetic field
purely in the x-direction, as shown in Fig. 6.8.
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Figure 6.7: The magnetic field pattern emulating strong screening by the superconductors.
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6.7.3. INTERFACE TRANSPARENCY VS. PATH LENGTH CUT-OFF
The zigzag geometry both increases the interface transparency (because particles typically
hit the superconductor closer to normal incidence) as well as sets an upper limit to the
trajectory length. The change in the interface transparency alone is not sufficient to
explain the increase of the topological gap. To verify this, we compute the dispersion of
a system with zx = zy = 80nm comparable to the Fermi wavelength λF and W = 400nm,
so that the angle of the boundaries is sufficiently large, but the boundary modulation is
much smaller than the width. We observe that Egap becomes 6.1µeV, a two-fold increase
compared to the straight system, not the order of magnitude increase resulting from the
cutting off of long trajectories.
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7.1. INTRODUCTION

In the computational sciences, one often does costly simulations—represented by a func-
tion f —where a certain region in parameter space X is sampled, mapping to a codomain
Y : f : X → Y . Frequently, the different points in X can be independently calculated.
Even though it is suboptimal, one usually resorts to sampling X on a homogeneous grid
because of its simple implementation.

An alternative, which improves the simulation efficiency, is to choose new potentially
interesting points in X , based on existing data [1–4]. Bayesian optimization works well for
high-cost simulations where one needs to find a minimum (or maximum) [5]. However,
if the goal of the simulation is to approximate a continuous function using the fewest
points, an alternative strategy is to use a greedy algorithm that samples mid-points of
intervals with the largest length or curvature [6]. Such a sampling strategy (i.e., in Fig. 7.1)
would trivially speedup many simulations. Another advantage of such an algorithm is
that it may be parallelized cheaply (i.e. more than one point may be sampled at a time),
as we do not need to perform a global computation over all the data (as we would with
Bayesian sampling) when determining which points to sample next.

The algorithm visualized in 7.1 consists of the following steps: (1) evaluate the function
at the boundaries a and b, of the interval of interest, (2) calculate the loss for the interval
La,b =

√
(b −a)2 + ( f (b)− f (a))2, (3) pick a new point xnew in the centre of the interval

with the largest loss, (xi , x j ), (4) calculate f (xnew), (5) discard the interval (xi , x j ) and
create two new intervals (xi , xnew) and (xnew, x j ), calculating their losses Lxi ,xnew and
Lxnew,x j (6) repeat from step 3.

In this chapter we present a class of algorithms that generalizes the above example.
This general class of algorithms is based on using a priority queue of subdomains (intervals
in 1-D), ordered by a loss obtained from a local loss function (which depends only on the
data local to the subdomain), and greedily selecting points from subdomains at the top
of the priority queue. The advantage of these local algorithms is that they have a lower
computational overhead than algorithms requiring global data and updates (e.g. Bayesian
sampling), and are therefore more amenable to parallel evaluation of the function of
interest.

We provide a reference implementation, the open-source Python package called
Adaptive [8], which has previously been used in several scientific publications [9–12]. It
has algorithms for f : RN →RM , where N , M ∈Z+ but which work best when N is small;
integration in R; and the averaging of stochastic functions. Most of our algorithms allow
for a customizable loss function with which one can adapt the sampling algorithm to
work optimally for different classes of functions. It integrates with the Jupyter notebook
environment as well as popular parallel computation frameworks such as ipyparallel,
mpi4py, and dask.distributed. It provides auxiliary functionality such as live-plotting,
inspecting the data as the calculation is in progress, and automatically saving and loading
of the data.

The raw data and source code that produces all plots in this chapter is available at
[13].
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Figure 7.1: Visualization of a 1-D sampling strategy for a black-box function (grey). We start by calculating the
two boundary points. Two adjacent existing data points (black) {xi , yi } define an interval. Each interval has a
loss Li ,i+1 associated with it that can be calculated from the points inside the interval Li ,i+1(xi , xi+1, yi , yi+1)
and optionally of N next nearest neighboring intervals. At each iteration the interval with the largest loss is
indicated (red), with its corresponding candidate point (green) picked in the middle of the interval. The loss
function in this example is an approximation to the curvature, calculated using the data from an interval and its
nearest neighbors.
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Figure 7.2: Comparison of homogeneous sampling (top) with adaptive sampling (bottom) for different one-
dimensional functions (red) where the number of points in each column is identical. We see that when the
function has a distinct feature—such as with the peak and tanh—adaptive sampling performs much better.
When the features are homogeneously spaced, such as with the wave packet, adaptive sampling is not as
effective as in the other cases.
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Figure 7.3: Comparison of homogeneous sampling (top) with adaptive sampling (bottom) for different two-
dimensional functions where the number of points in each column is identical. On the left is the function
f (x) = x +a2/(a2 + (x −xoffset)2). In the middle a topological phase diagram from [7], where the function can
take the values -1 or 1. On the right, we plot level crossings for a two-level quantum system. In all cases using
Adaptive results in a higher fidelity plot.
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7.2. REVIEW OF ADAPTIVE SAMPLING
Optimal sampling and planning based on data is a mature field with different commu-
nities providing their own context, restrictions, and algorithms to solve their problems.
To explain the relation of our approach with prior work, we discuss several existing con-
texts. This is not a systematic review of all these fields, but rather, we aim to identify the
important traits and design considerations.

Optimal experiment design (OED) is a field of statistics that minimizes the number
of experimental runs needed to estimate specific parameters and, thereby, reduce the
cost of experimentation [14]. It works with many degrees of freedom and can consider
constraints, for example, when the sample space contains regions that are infeasible for
practical reasons. One form of OED is response-adaptive design [15], which concerns the
adaptive sampling of designs for statistical experiments. Here, the acquired data (i.e., the
observations) are used to estimate the uncertainties of a certain desired parameter. It then
suggests further experiments that will optimally reduce these uncertainties. In this step of
the calculation Bayesian statistics is frequently used. Bayesian statistics naturally provides
tools for answering such questions; however, because it provides closed-form solutions,
Markov chain Monte Carlo (MCMC) sampling is the standard tool for determining the
most promising samples. In a typical non-adaptive experiment, decisions on which
experiments to perform are made in advance.

Plotting a low dimensional function in between bounds requires one to evaluate the
function on sufficiently many points such that when we interpolate values in between
data points, we get an accurate description of the function values that were not explicitly
calculated. In order to minimize the number of function evaluations, one can use adaptive
sampling routines. For example, for one-dimensional functions, Mathematica [16] im-
plements a FunctionInterpolation class that takes the function, xmin, and xmax, and
returns an object that samples the function more densely in regions with high curvature;
however, details on the algorithm are not published. Subsequently, we can query this
object for points in between xmin and xmax, and get the interpolated value, or we can use it
to plot the function without specifying a grid. Another application for adaptive sampling
is numerical integration. It works by estimating the integration error of each interval
and then minimizing the sum of these errors greedily. For example, the CQUAD algorithm
[17] in the GNU Scientific Library [18] implements a more sophisticated strategy and
is a doubly-adaptive general-purpose integration routine which can handle most types
of singularities. In general, it requires more function evaluations than the integration
routines in QUADPACK [18]; however, it works more often for difficult integrands. It is
doubly-adaptive because it can decide to either subdivide intervals into more intervals or
refine an interval by using a polynomial approximation of higher degree, requiring more
points.

Hydrodynamics [19, 20] and astrophysics [21] use an adaptive refinement of the
triangulation mesh on which a partial differential equation is discretized. By providing
smaller mesh elements in regions with a higher variation of the solution, they reduce the
amount of data and calculation needed at each step of time propagation. The remeshing
at each time step happens globally, and this is an expensive operation. Therefore, mesh
optimization does not fit our workflow because expensive global updates should be
avoided. Computer graphics uses similar adaptive methods where a smooth surface can
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represent a surface via a coarser piecewise linear polygon mesh, called a subdivision
surface [22]. An example of such a polygonal remeshing method is one where the polygons
align with the curvature of the space or field; this is called anisotropic meshing [23].

7.3. DESIGN CONSTRAINTS AND THE GENERAL ALGORITHM
The general algorithm that we describe in this chapter works best for low to intermediate
cost functions. Determining the next candidate points happens in a single sequential
process while the function executions can be in parallel. This means that to benefit from
an adaptive sampling algorithm, that the time it takes to suggest a new point tsuggest must
be much smaller than the average function execution time t f over the number of parallel
workers N : t f /N À tsuggest. Functions that are fast to evaluate can be calculated on a
dense grid, and functions that are slow to evaluate might benefit from full-scale Bayesian
optimization where tsuggest is large. We are interested in the intermediate case, when one
wishes to sample adaptively, but cannot afford the luxury of fitting of all available data
at each step. While this may seem restrictive, we assert that a large class of functions is
inside the right regime for local adaptive sampling to be beneficial.

Because we aim to keep the suggestion time tsuggest small, we propose to use the
following approach, which operates on a constant-size subset of the data to determine
which point to suggest next. We keep track of the subdomains in a priority queue, where
each subdomain is assigned a priority called the “loss”. To suggest a new point we
remove the subdomain with the largest loss from the priority queue and select a new
point xnew from within it (typically in the centre) This splits the subdomain into several
smaller subdomains {Si } that each contain xnew on their boundaries. After evaluating the
function at xnew we must then recompute the losses using the new data. We choose to
consider loss functions that are “local”, i.e. the loss for a subdomain depends only on the
points contained in that subdomain and possibly a (small) finite number of neighboring
subdomains. This means that we need only recalculate the losses for subdomains that
are “close” to xnew. Having computed the new losses we must then insert the {Si } into
the priority queue, and also update the priorities of the neighboring subdomains, if their
loss was recalculated. After these insertions and updates we are ready to suggest the
next point to evaluate. Due to the local nature of this algorithm and the sparsity of space
in higher dimensions, we will suffer from the curse of dimensionality. The algorithm,
therefore, works best in low dimensional space; typically calculations that can reasonably
be plotted, so with 1, 2, or 3 degrees of freedom.

The algorithm described above can be made more precise by the following Python
code:

1 first_subdomain, = domain.subdomains()
2 for x in domain.points(first_subdomain):
3 data[x] = f(x)
4

5 queue.insert(first_subdomain, priority=loss(domain, first_subdomain,
data))

6

7 while queue.max_priority() < target_loss:
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8 loss, subdomain = queue.pop()
9

10 new_points, new_subdomains = domain.split(subdomain)
11 for x in new_points:
12 data[x] = f(x)
13

14 for subdomain in new_subdomains:
15 queue.insert(subdomain, priority=loss(domain, subdomain, data))
16

17 if loss.n_neighbors > 0:
18 subdomains_to_update = set()
19 for d in new_subdomains:
20 neighbors = domain.neighbors(d, loss.n_neighbors)
21 subdomains_to_update.update(neighbors)
22 subdomains_to_update -= set(new_subdomains)
23 for subdomain in subdomains_to_update:
24 queue.update(subdomain, priority=loss(domain, subdomain, data))

where we have used the following definitions:

f The function we wish to learn

queue A priority queue of unique elements, supporting the following methods:
max_priority(), to get the priority of the top element; pop(), remove and return
the top element and its priority; insert(element, priority), insert the given
element with the given priority into the queue; update(element, priority),
update the priority of the given element, which is already in the queue.

domain An object representing the domain of f split into subdomains. Supports the fol-
lowing methods: subdomains(), returns all the subdomains; points(subdomain),
returns all the points contained in the provided subdomain; split(subdomain),
splits a subdomain into smaller subdomains, returning the new points and new sub-
domains produced as a result; neighbors(subdomain, n_neighbors), returns
the subdomains neighboring the provided subdomain.

data A hashmap storing the points x and their values f(x).

loss(domain, subdomain, data) The loss function, with loss.n_neighbors being
the degree of neighboring subdomains that the loss function uses.

An example of such a local loss function for a one-dimensional function is the inter-
point distance, i.e. given a subdomain (interval) (xa, xb) with values (ya, yb) the loss is√

(xa −xb)2 + (ya − yb)2. A more complex loss function that also takes the first neighbor-
ing intervals into account is one that approximates the second derivative using a Taylor
expansion. Figure 7.2 shows a comparison between a result using this loss and a function
that is sampled on a grid.

The key data structures in the above algorithm are queue and domain. The priority
queue must support efficiently finding and removing the maximum priority element,
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as well as updating the priority of arbitrary elements whose priority is unknown (when
updating the loss of neighboring subdomains). Such a datastructure can be achieved
with a combination of a hashmap (mapping elements to their priority) and a red–black
tree or a skip list [24] that stores (priority, element). This has average complexity
of O (logn) for all the required operations. In the reference implementation, we use the
SortedContainers Python package [25], which provides an efficient implementation of
such a data structure optimized for realistic sizes, rather than asymptotic complexity. The
domain object requires efficiently splitting a subdomain and querying the neighbors of
a subdomain. For the one-dimensional case this can be achieved by using a red–black
tree to keep the points x in ascending order. In this case both operations have an average
complexity of O (logn). In the reference implementation we again use SortedContainers.
We thus see that by using the appropriate data structures the time required to suggest a
new point is tsuggest ∝O (logn). The total time spent on suggesting points when sampling
N points in total is thus O (N log N ).

So far, the description of the general algorithm did not include parallelism. In order
to include parallelism we need to allow for points that are “pending”, i.e. whose value
has been requested but is not yet known. In the sequential algorithm subdomains only
contain points on their boundaries. In the parallel algorithm pending points are placed in
the interior of subdomains, and the priority of the subdomains in the queue is reduced to
take these pending points into account. Later, when a pending point x is finally evaluated,
we split the subdomain that contains x such that it is on the boundary of new, smaller,
subdomains. We then calculate the priority of these new subdomains, and insert them
into the priority queue, and update the priority of neighboring subdomains if required.

The parallel version of the algorithm can be described by the following Python code:

1 def priority(domain, subdomain, data):
2 subvolumes = domain.subvolumes(subdomain)
3 max_relative_subvolume = max(subvolumes) / sum(subvolumes)
4 L_0 = loss(domain, subdomain, data)
5 return max_relative_subvolume * L_0
6

7 first_subdomain, = domain.subdomains()
8 for x in domain.points(first_subdomain):
9 data[x] = f(x)

10

11 new_points = domain.insert_points(first_subdomain, executor.ncores)
12 for x in new_points:
13 data[x] = None
14 executor.submit(f, x)
15

16 queue.insert(first_subdomain, priority=priority(domain, subdomain,
data))

17

18 while executor.n_outstanding_points > 0:
19 x, y = executor.get_one_result()
20 data[x] = y
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21

22 # Split into smaller subdomains with ‘x‘ at a subdomain boundary
23 # And calculate the losses for these new subdomains
24 old_subdomains, new_subdomains = domain.split_at(x)
25 for subdomain in old_subdomains:
26 queue.remove(old_subdomain)
27 for subdomain in new_subdomains:
28 queue.insert(subdomain, priority(domain, subdomain, data))
29

30 if loss.n_neighbors > 0:
31 subdomains_to_update = set()
32 for d in new_subdomains:
33 neighbors = domain.neighbors(d, loss.n_neighbors)
34 subdomains_to_update.update(neighbors)
35 subdomains_to_update -= set(new_subdomains)
36 for subdomain in subdomains_to_update:
37 queue.update(subdomain, priority(domain, subdomain, data))
38

39 # If it looks like we’re done, don’t send more work
40 if queue.max_priority() < target_loss:
41 continue
42

43 # Send as many points for evaluation as we have compute cores
44 for _ in range(executor.ncores - executor.n_outstanding_points)
45 loss, subdomain = queue.pop()
46 new_point, = domain.insert_points(subdomain, 1)
47 data[new_point] = None
48 executor.submit(f, new_point)
49 queue.insert(subdomain, priority(domain, subdomain, data))

Where we have used identical definitions to the serial case for f, data, loss and the
following additional definitions:

queue As for the sequential case, but must additionally support: remove(element),
remove the provided element from the queue.

domain As for the sequential case, but must additionally support:
insert_points(subdomain, n), insert n (pending) points into the given sub-
domain without splitting the subdomain; subvolumes(subdomain), return the
volumes of all the sub-subdomains contained within the given subdomain;
split_at(x), split the domain at a new (evaluated) point x, returning the old
subdomains that were removed, and the new subdomains that were added as a
result.

executor An object that can submit function evaluations to computing resources and
retrieve results. Supports the following methods: submit(f, x), schedule the
execution of f(x) and do not block ; get_one_result(), block waiting for a single
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result, returning the pair (x, y) as soon as it becomes available; ncores, the
total number of parallel processing units; n_outstanding_points, the number of
function evaluations that have been requested and not yet retrieved, incremented
by submit and decremented by get_one_result.

7.4. LOSS FUNCTION DESIGN
Not all goals are achieved by using an identical sampling strategy; the specific problem
determines the goal. For example, quadrature rules requires a denser sampling of the
subdomains where the interpolation error is highest, plotting (or function approximation)
requires continuity of the approximation, maximization only cares about finding an
optimum, and isoline or isosurface sampling aims to sample regions near a given function
value more densely. These different sampling goals each require a loss function tailored
to the specific case.

Additionally, it is important to take the class of functions being learned when selecting
a loss function into account, even if the specific goal (e.g. continuity of the approximation)
remains unchanged. For example, if we wanted a smooth approximation to a function
with a singularity, then the interpoint distance loss function would be a poor choice, even
if it is generally a good choice for that specified goal. This is because the aforementioned
loss function will “lock on” to the singularity, and will fail to sample the function elsewhere
once it starts. This is an illustration of the following principle: for optimal sampling
performance, loss functions should be tailored to the particular domain of interest.

One strategy for designing loss functions is to take existing loss functions and apply a
regularization. For example, to limit the over-sampling of singularities inherent in the
distance loss we can set the loss of subdomains that are smaller than a given threshold to
zero, which will prevent them from being sampled further.

Another general strategy for designing loss functions is to combine existing loss func-
tions that optimize for particular features, and then combine them together. Typically one
weights the different constituent losses to prioritize the different features. For example,
combining a loss function that calculates the curvature with a distance loss function will
sample regions with high curvature more densely, while ensuring continuity. Another
important example is combining a loss function with the volume of the subdomain,
which will ensure that the sampling is asymptotically dense everywhere (because large
subdomains will have a correspondingly large loss). This is important if there are many
distinct and narrow features that all need to be found, and densely sampled in the region
around the feature.

7.5. EXAMPLES

7.5.1. LINE SIMPLIFICATION LOSS
Inspired by a method commonly employed in digital cartography for coastline simplifica-
tion, Visvalingam’s algorithm, we construct a loss function that does its reverse [26]. Here,
at each point (ignoring the boundary points), we compute the effective area associated
with its triangle, see Fig. 7.4(b). The loss then becomes the average area of two adjacent
triangles. By Taylor expanding f around x it can be shown that the area of the triangles
relates to the contributions of the second derivative. We can generalize this loss to N
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(a)
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Figure 7.4: Line loss visualization. In this example, we start with 6 points (a) on the function (grey). Ignoring
the endpoints, the effective area of each point is determined by its associated triangle (b). The loss of each
interval can be computed by taking the average area of the adjacent triangles. Subplots (c), (d), and (e) show the
subsequent iterations following (b).

dimensions, where the triangle is replaced by a (N +1) dimensional simplex.
In order to compare sampling strategies, we need to define some error. We construct

a linear interpolation function f̃ , which is an approximation of f . We calculate the error
in the L1-norm, defined as,

Err1( f̃ ) = ∥∥ f̃ − f
∥∥

L1 =
∫ b

a

∣∣ f̃ (x)− f (x)
∣∣dx.

This error approaches zero as the approximation becomes better.
Figure 7.5 shows this error as a function of the number of points N . Here, we see that

for homogeneous sampling to get the same error as sampling with a line loss, a factor
≈ 1.6−20 times more points are needed, depending on the function.

7.5.2. A PARALLELIZABLE ADAPTIVE INTEGRATION ALGORITHM BASED ON

CQUAD
In Sec. 7.2 we mentioned the doubly-adaptive integration algorithm CQUAD [17]. This
algorithm uses a Clenshaw-Curtis quadrature rules of increasing degree d in each interval

[27]. The error estimate is
√∫ (

f0(x)− f1(x)
)2, where f0 and f1 are two successive inter-

polations of the integrand. To reach the desired total error, intervals with the maximum
absolute error are improved. Either (1) the degree of the rule is increased or (2) the interval
is split if either the function does not appear to be smooth or a rule of maximum degree
(d = 4) has been reached. All points inside the intervals can be trivially calculated in
parallel; however, when there are more resources available than points, Adaptive needs to
guess whether an (1) interval’s should degree of the rule should be increased or (2) or the
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Figure 7.5: The L1-norm error as a function of number of points N for the functions in Fig. 7.2 (a,b,c). The
interrupted lines correspond to homogeneous sampling and the solid line to the sampling with the line loss. In
all cases adaptive sampling performs better, where the error is a factor 1.6-20 lower for N = 10000.

interval is split. Here, we choose to always increase until d = 4, after which the interval is
split.

7.5.3. ISOLINE AND ISOSURFACE SAMPLING
A judicious choice of loss function allows to sample the function close to an isoline
(isosurface in 2D). Specifically, we prioritize subdomains that are bisected by the isoline
or isosurface:

1 def isoline_loss_function(level, priority):
2 def loss(simplex, values, value_scale):
3 values = np.array(values)
4 which_side = np.sign(level * value_scale - values)
5 crosses_isoline = np.any(np.diff(which_side))
6 return volume(simplex)* (1 + priority * crosses_isoline)
7 return loss

See Fig. 7.6 for a comparison with uniform sampling.

7.6. IMPLEMENTATION AND BENCHMARKS
We will now introduce Adaptive’s API. The object that can suggest points based on existing
data is called a learner. The learner abstracts the sampling strategy based on a priority
queue and local loss functions that we described in Sec. 7.3. We define a learner as follows:

1 from adaptive import Learner1D
2

3 def f(x):
4 a = 0.01
5 return x + a**2 / (a**2 + x**2)
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Figure 7.6: Comparison of isoline sampling of f (x, y) = x2 + y3 at f (x, y) = 0.1 using homogeneous sampling
(left) and adaptive sampling (right) with the same amount of points n = 122 = 144. We plot the function
interpolated on a grid (color) with the triangulation on top (white) where the function is sampled on the vertices.
The solid line (black) indicates the isoline at f (x, y) = 0.1. The isoline in the homogeneous case consists of 43
line segments and the adaptive case consists of 94 line segments.

6

7 learner = Learner1D(f, bounds=(-1, 1))

We provide the function to learn, the domain boundaries, and use a default loss
function. We can then ask the learner for points:

1 points, priorities = learner.ask(4)

The learner gives us back the points that we should sample next, as well as the priori-
ties of these points (the loss of the parent subdomains). We can then evaluate some of
these points and tell the learner about the results:

1 data = [learner.function(x) for x in points]
2 learner.tell_many(points, data)

To change the loss function we pass a function that takes points and values, like so:

1 def distance_loss(xs, ys): # used by default
2 dx = xs[1] - xs[0]
3 dy = ys[1] - ys[0]
4 return np.hypot(dx, dy)
5

6 learner = Learner1D(peak, bounds=(-1, 1),
loss_per_interval=distance_loss)

If we wanted to create the “volume loss” discussed in Sec. 7.4 we could simply write:

1 def uniform_loss(xs, ys):
2 dx = xs[1] - xs[0]
3 return dx
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4

5 learner = Learner1D(peak, bounds=(-1, 1),
loss_per_interval=uniform_loss)

The previous example shows how we can drive the learner manually. For example, to
run the learner until the loss is below 0.01 we could do the following:

1 def goal(learner):
2 return learner.loss() < 0.01
3

4 while not goal(learner):
5 (x,), _ = learner.ask(1)
6 y = f(x)
7 learner.tell(x, y)

This approach allows for the best adaptive performance (i.e. fewest number of points
to reach the goal) because the learner has maximal information about f every time we
ask it for the next point. However this does not allow to take advantage of multiple cores,
which may enable better walltime performance (i.e. time to reach the goal). Adaptive
abstracts the task of driving the learner and executing f in parallel to a Runner:

1 from adaptive import Runner
2 runner = Runner(learner, goal)

The above code uses the default parallel execution context, which occupies all the
cores on the machine. It is simple to use ipyparallel to enable calculations on a cluster:

1 import ipyparallel
2

3 runner = Runner(learner, goal, executor=ipyparallel.Client())

If the above code is run in a Jupyter notebook it will not block. Adaptive takes advan-
tage of the capabilities of the IPython to execute concurrently with the Python kernel. This
means that as the calculation is in progress the data is accessible without race conditions
via learner.data, and can be plotted with learner.plot(). Additionally, in a Jupyter
notebook environment, we can call runner.live_info() to display useful information
about the ongoing calculation.

We have also implemented a LearnerND with a similar API

1 from adaptive import LearnerND
2

3 def ring(xy): # pretend this is a slow function
4 x, y = xy
5 a = 0.2
6 return x + np.exp(-(x**2 + y**2 - 0.75**2)**2/a**4)
7

8 learner = adaptive.LearnerND(ring, bounds=[(-1, 1), (-1, 1)])
9 runner = Runner(learner, goal)
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Again, it is possible to specify a custom loss function using the loss_per_simplex
argument.

Frequently, more than one function (learner) needs to run at once, to do this we
have implemented the BalancingLearner, which does not take a function, but a list of
learners. This learner internally asks all child learners for points and will choose the point
of the learner that maximizes the loss improvement; it balances the resources over the
different learners. We can use it like

1 from functools import partial
2 from adaptive import BalancingLearner
3

4 def f(x, pow):
5 return x**pow
6

7 learners = [Learner1D(partial(f, pow=i)), bounds=(-10, 10) for i in
range(2, 10)]

8 bal_learner = BalancingLearner(learners)
9 runner = Runner(bal_learner, goal)

For more details on how to use Adaptive, we recommend reading the tutorial inside
the documentation [28].

7.7. POSSIBLE EXTENSIONS
One of the fundamental operations in the adaptive algorithm is selecting a point from
within a subdomain. The current implementation uses simplices for subdomains (trian-
gles in 2D, tetrahedrons in 3D), and picks a point either (1) in the center of the simplex
or (2) on the longest edge of the simplex. The choice depends on the shape of the sim-
plex; the center is only used if using the longest edge would produce unacceptably thin
simplices. A better strategy may be to choose points on the edge of a simplex such that
the simplex aligns with the gradient of the function, creating an anisotropic triangulation
[29]. This is a similar approach to the anisotropic meshing techniques mentioned in the
literature review.

Stochastic processes frequently appear in numerical sciences. Currently, Adaptive
has an AverageLearner that samples a random variable (modelled as a function that
takes no parameters and returns a different value each time it is called) until the mean is
known to within a certain standard error. This is advantageous because no predetermined
number of samples has to be set before starting the simulation. Extending this learner
to be able to deal with stochastic functions in arbitrary dimensions would be a useful
addition.

Finally, there is the potential to use Adaptive for experimental control. There are
a number of challenges associated with this use case. Firstly, experimental results are
typically stochastic (due to noise), and would require sampling the same point in pa-
rameter space several times. This aspect is closely associated with sampling stochastic
functions discussed in the preceding paragraph. Secondly, in an experiment one typically
cannot jump around arbitrary quickly in parameter space. It may be faster to sweep one
parameter compared to another; for example, in condensed matter physics experiments,
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sweeping magnetic field is much slower than sweeping voltage source frequency. Lastly,
some experiments exhibit hysteresis. This means that results may not be reproducible
if a different path is taken through parameter space. In such a case one would need to
restrict the sampling to only occur along a certain path in parameter space. Incorporating
such extensions into Adaptive would require adding a significant amount of extra logic,
as learners would need to take into account not only the data available, but the order in
which the data was obtained, and the timing statistics at different points in parameter
space. Despite these challenges, however, Adaptive can already be used in experiments
that are not restricted in these ways.
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